IAR
  ContactoContacto
Google

Fig. 1. Espectro electromagnético expresado en distintas unidades junto a la absorción atmosférica en función de la energía y las técnicas de detección utilizadas en cada caso
 
Fig. 2. Los rayos gamma ingresan en la atmósfera, dando lugar a una cascada de partículas energéticas que producen un cono de luz Cherenkov a su paso. Esta luz es colectada por detectores en tierra.
 
Fig. 3. Izquierda: Imagen elipsoidal producida por una cascada de partículas en la cámara de fotomultiplicadores de un telescopio. Derecha: En la detección estereoscópica se combinan las elipses obtenidas por los distintos telescopios, mejorando de manera importante la determinación de la dirección de arribo del rayo gamma.
 
Fig. 4. Imágenes de cascadas atmosféricas de partículas iniciadas por un rayo gamma (izquierda) y por un hadrón, que puede ser un protón o un núcleo más pesado (derecha).
 
Fig . 5. Telescopios MAGIC, en La Palma, Islas Canarias.
 
Fig. 6. Telescopios H.E.S.S. I y II ubicados en Namibia.
 
Fig. 7. Telescopios VERITAS, en el predio del Observatorio FLW.
 
Fig. 8. Diseño de CTA. Arriba: representación artística de una de las posibles configuraciones para CTA-Sur. Abajo, izquierda: se utilizarán 3 tamaños de telescopios para cubrir distintos rangos de energía. Abajo, derecha: Dos posibles configuraciones de telescopios para los arreglos Norte y Sur.
 
Dra. M. C. Medina
  • Descargar artículo Descargar

Astronomía gamma de altas energías

Los rayos gamma son una forma de radiación electromagnética que se encuentra en el extremo más elevado de energía de lo que llamamos espectro electromagnético.
Los rayos gamma de altas energías son producidos en fenómenos extremadamente “violentos” del Universo, en los que se pone en juego una cantidad de energía lo suficientemente grande como para acelerar partículas cargadas que emitirán esta radiación al interactuar con la materia o los campos electromagnéticos que las rodeen. Entre estos fenómenos podemos contar con explosiones de supernova, formación de estrellas, acreción de material por objetos compactos, etc.
Estos rayos gamma viajan por el espacio de altas energías sin ser desviados por los campos magnéticos y, si no fueron absorbidos por los campos de radiación que llenan el Universo, pueden llegar a nosotros trayendo con ellos valiosa información sobre las fuentes que los produjeron.
Afortunadamente para nuestros frágiles cuerpos (que no resistirían el poder penetrante de esta radiación) la atmósfera terrestre actúa como escudo para estos rayos gamma altamente energéticos que llegan desde el espacio exterior.(Ver Fig.1)
Es por esto que, a pesar de que la emisión gamma en diferentes escenarios astrofísicos fue predicha ya en los tempranos años 50 del siglo XX, sólo pudo confirmarse cuando fuimos capaces de enviar detectores más allá de la atmósfera haciendo uso de globos aerostáticos o satélites. El primer telescopio de rayos gamma fue transportado por un satélite en 1961, y detectó una centena de fotones de altas energías con direcciones de arribo distribuidas isotrópicamente en el cielo.
En 1967 la emisión gamma de nuestra propia galaxia fue registrada por el detector instalado a bordo del satélite OSO-31. Unos años después, gracias a los instrumentos instalados en los satélites SAS-22 y COS-B3, se logró realizar el primer mapa detallado del Universo en rayos gamma. En este mapa se distinguieron las primeras fuentes puntuales (emisión muy concentrada proveniente de un área pequeña) aunque no identificables con objetos conocidos.
En 1977 NASA comenzó la construcción del Compton Gamma-Ray Observatory (CGRO), que fue lanzado en 19914. Este satélite llevaba cuatro experimentos con una resolución angular y energética sin precedentes para realizar astronomía gamma. El CGRO dió como resultado una cantidad inmensa de datos que sirvieron para dar un salto importante en nuestro conocimiento del Universo no térmico.
Distintas misiones se sucedieron a partir de ese momento, como por ejemplo, el satélite Swift5 diseñado especialmente para investigar Gamma-Ray Bursts (GRB) o erupciones de rayos gamma. La información sobre la detección de un GRB es transmitida a tierra en tiempo real para permitir a otros observadores (en óptico, radio o rx en distintas longitudes de onda) seguir la evolución de la erupción gamma.
En la actualidad, Swift opera de manera coordinada con el último telescopio de rayos gamma de la NASA, Fermi/LAT6, lanzado al espacio en 2008. Este telescopio ha revolucionado el estudio del Universo en rayos gamma, ya que con su sensibilidad maximizada en un amplio rango de energía (30 MeV - 300 GeV) y su exposición total, se ha logrado revelar centenas de fuentes galácticas y extragalacticas, correspondientes a objetos conocidos pero también se han detectado fuentes gamma totalmente desconocidas hasta hoy.
Dado el éxito de los detectores instalados fuera de la atmósfera, el desarrollo paralelo de la técnica de detección gamma desde tierra puede resultar sorpresivo, pero tuvo el mismo empuje por parte de la comunidad científica a pesar de los diversos desafíos técnicos que presenta. Esto se explica a partir del hecho de que el flujo de rayos gamma (es decir, cuantos fotones por unidad de área y por unidad de tiempo llegan a la Tierra) disminuye drásticamente con la energía de estos fotones. Esto significa que para detectar los fotones más energéticos es necesario tener un detector con una gran superficie de colección o integrar los que llegan a una pequeña superficie en una cantidad de tiempo importante. Sucede que el área de detección de los telescopios transportados por satélites está limitada por la capacidad de carga de los mismos, lo cual impone una limitación en la energía de los fotones que se pueden registrar (GeV).
Científicos visionarios y deseosos de observar fotones mucho más energéticos proviniendo de fuentes astrofísicas consideraron que podían utilizar lo que era una desventaja para los instrumentos asentados en satélites como una ventaja para la detección a más altas energías e incorporaron la atmósfera como parte del detector. Y lo hicieron considerándola como un gran calorímetro en el cual es posible determinar las características del rayo gamma inicial estudiando los efectos que provoca su entrada en la atmósfera terrestre.
Sabemos que los rayos gamma son "absorbidos" por la atmósfera, es decir que se desintegran al interactuar con las moléculas de aire. El fotón inicial crea un par electrón - positrón que interactuaran a su vez con la materia y campos de la atmósfera y entregaran parte de su energía para crear fotones secundarios. Estos, a su vez, pueden crear más electrones, dando como resultado una "lluvia" de electrones y fotones desarrollándose por la atmósfera hasta que la energía total se acaba. Estas partículas son extremadamente energéticas, lo que significa que tienen velocidades cercanas a la de la luz. De hecho, estas partículas viajan más rápido que la luz en el medio atmosférico. Esto produce la polarización de los átomos locales, que emiten una luz débil y azulada cuando vuelven a su estado normal. Esta luz se conoce como radiación Cherenkov7. Colectando ésta radiación cuando se produce una cascada, es posible determinar la cantidad de partículas que la conforman y, a partir de allí, la energía del fotón que ingresó a la atmósfera.
Miles de electrones y positrones capaces de generar luz Cherenkov se producen en este proceso y como resultado, un "flash" de luz azulada acompaña el desarrollo de la cascada. Este "flash" iluminará la superficie terrestre en una gran superficie, determinada por el ángulo de emisión de los fotones Cherenkov (>100 m2). Luego, simplemente, es posible captar estos fotones con solo ubicar un detector dentro de esa superficie. (Ver Fig.2)
 
- Técnica de detección
 
El instrumento que se utiliza para detectar la radiación Cherenkov atmosférica comprende principalmente un gran disco reflector que colecta la luz generada en la atmósfera y la focaliza sobre un arreglo o cámara de fotomultiplicadores (una centena aproximadamente). Los espejos que se usan para colectar la luz son en general segmentados, lo que reduce el costo del detector y no afecta la calidad requerida de las imágenes. El pulso óptico es digitalizado y amplificado para luego registrar la imagen de la cascada a partir de la información procesada por los distintos fotomultiplicadores o "pixeles" que detectaron la luz Cherenkov. La distribución de pixeles "tocados" por la luz dará información sobre el tamaño de la cascada de partículas y la dirección de arribo de la misma.(Ver Fig.3)
Son dos las limitaciones más importantes de esta técnica. Primero, la luz producida en cada "flash" Cherenkov es muy débil y de muy corta duración (algunos nanosegundos) y puede detectarse sólo en noches oscuras y con atmósferas limpias. Además, no solo los rayos gamma que ingresan a la atmósfera producen luz Cherenkov. Los rayos cósmicos (protones y núcleos) también generan cascadas de partículas relativistas y, por ende, radiación Cherenkov. Como su dirección de arribo es isotrópica, estos producen un fondo de luz que solapa la señal de los rayos gamma. (Ver Fig. 4)
Este fondo se puede separar a partir del análisis de las imágenes obtenidas en la cámara de fotomultiplicadores. Las imágenes Cherenkov generadas por un rayo gamma tienen forma de finas elipses que están alineadas con la dirección de arribo del fotón. En cambio, las imágenes producidas por una cascada hadrónica (iniciada por un protón o núcleo) son más circulares, sin presentar alineamiento con ninguna dirección. En el momento del análisis, se eligen sólo aquellas imágenes que presentan las características de una cascada fotónica.
 
Instrumentos actuales
 
En la actualidad existen tres grandes experimentos dedicados a la astronomía gamma en tierra. Todos ellos hacen uso de la técnica de detección estereoscópica, es decir que el Cherenkov producido por las cascadas de partículas es observado simultáneamente por 2 o más telescopios. Esto mejora drásticamente la reconstrucción de la dirección de arribo y la sensibilidad en energía, principalmente gracias a una mejor separación entre la señal y el ruido (que en este caso son los rayos cósmicos).
Gracias a estos instrumentos estereoscópicos, la astronomía gamma de altas energías ha dado un importante salto desde los primeros telescopios construidos en los años 80. Hasta el día de hoy estos instrumentos han detectado más de 150 fuentes de rayos gamma de altas energías8.
 
MAGIC9
 
Son dos telescopios Cherenkov ubicados cerca de la cima de la montaña Roque de los muchachos (2000 m s.n.m), en La Palma, Islas Canarias. Los telescopios tienen 17 m de diámetro y están separados unos 85 m. Pertenece a una colaboración internacional de 8 países y 17 instituciones.(Ver Fig.5)
 
H.E.S.S.10
 
Es un sistema de 5 telescopios Cherenkov ubicados al sur de Namibia, cerca de la montaña Gamsberg, a 1800 m de altura. Cuatro de los telescopios tienen un disco reflector de 12 m de diámetro, mientras que el quinto, instalado recientemente, posee 28 m de diámetro de superficie colectora. Con la instalación de este último telescopio se logró bajar el umbral de energía detectable de los fotones hasta unos pocos GeV. Es el único arreglo de telescopios Cherenkov en el hemisferio sur y tiene una exposición única al plano galáctico. Operan este experimento 32 instituciones de 12 países. (Ver Fig.6)
 
VERITAS11
 
Es un arreglo de 4 telescopios de 12 m de diámetro ubicados en el Observatorio Fred Lawrence Whipple (FLWO) en Arizona, USA. El rango de energía detectable por VERITAS es de 50 GeV a 50 TeV. Participan de este experimento 4 países: USA, Canadá, Reino Unido e Irlanda.(Ver Fig.7)
 
- Futuro de la astronomía gamma
 
CTA (Cherenkov Telescope Array)12
 
Dado el éxito obtenido por los arreglos de telescopios actuales, la comunidad científica dedicada a la astronomía gamma de altas energías decidió aunar esfuerzos en torno a la construcción de la nueva generación de detectores Cherenkov. Un consorcio internacional formado por instituciones de más de 25 países se formó para diseñar y construir el primer observatorio de rayos gamma abierto a la comunidad científica.
El observatorio CTA estará formado por dos arreglos de telescopios, uno en el hemisferio Sur y otro en el hemisferio Norte, cubriendo así la totalidad del cielo. Debido a que la mayor parte de la Vía Láctea se ve desde el hemisferio Sur y que los rayos gamma de mayor energía proceden de fuentes galácticas, CTA Sur será más sensible a rayos gamma de mayor energía (decenas de TeV). En términos de diseño esto se traduce en un mayor número de telescopios que cubra una superficie más extensa (10km2 en CTA-Sur frente a 1km2 en CTA-Norte). CTA Norte se centrará en la observación de fuentes extragalácticas.
Para cubrir el amplio rango energético deseado, CTA estará formado por telescopios Cherenkov de distintos tamaños, lo que permitirá captar flashes Cherenkov de diferentes intensidades de manera simultánea. El diseño actual cuenta con tres tipos de telescopios:
 
- telescopios grandes (diámetro alrededor de 25 metros) destinados a detectar los rayos gamma menos energéticos conforman la parte central de la red de telescopios,
- telescopios medianos (diámetro aproximado de 12 metros) para captar rayos gamma de energías comparables a los detectados por los arreglos actuales,
- telescopios pequeños (de unos 6 metros) destinados a detectar los rayos gamma de mayor energía cubriendo una gran superficie alrededor de los telescopios grandes y medianos.
 
Con CTA se espera tener una sensibilidad 10 veces superior a la de los instrumentos funcionando en la actualidad y mejorar la resolución angular, temporal y en energía en un factor importante (5 veces mejor). De esta manera el numero de fuentes detectables aumentara y la calidad de los datos permitirá realizar estudios mucho más exhaustivos del universo no-térmico.(Ver Fig.8)
En este momento el proyecto se encuentra en la parte final de la fase preparatoria, y se espera iniciar su construcción en un futuro cercano, luego de la elección del sitio para su emplazamiento en ambos hemisferios. Argentina es uno de los países candidatos para alojar CTA-Sur, y varios institutos argentinos (entre los que se encuentra el IAR) trabajan de forma activa en diversos tópicos relacionados con el diseño de CTA. La elección se realizará a principios del año 2014, lo que permitirá comenzar la construcción en 2015.
 
- Sobre el autor
 
La Dra. María Clementina Medina se doctoró en Física en la Universidad Nacional de General San Martín trabajando en el marco del Observatorio Pierre Auger de Rayos Cósmicos.
Luego realizó largas estadias postdoctorales en Francia, primero en el Observatorio de Paris en Meudon, y luego en la CEA de Saclay. Es miembro de las colaboraciones High Energy Stereoscopic System (HESS) y Cherenkov Telescope Array (CTA). Ha trabajado intensamente en desarrollo tecnológico asi como en astrofísica teórica y observacional. Se incorporó al IAR en agosto de 2012, como Investigadora Asistente de la Carrera del CONICET, bajo la direccion del Dr. Gustavo E. Romero, a cuyo grupo pertenece.
Trabaja en CTA, simulaciones, y desarrollo de tecnología, manteniendo fuertes vínculos con las instituciones francesas.
 

 
1. Satélite OSO-3. http://heasarc.gsfc.nasa.gov/docs/heasarc/missions/oso3.html
2. Satélite SAS-2. http://heasarc.gsfc.nasa.gov/docs/sas2/sas2.html
3. Satélite COS-B. http://heasarc.gsfc.nasa.gov/docs/cosb/cosb.html
4. Satélite CGRO. http://heasarc.gsfc.nasa.gov/docs/cgro/index.html
5. Satélite Swift. http://swift.gsfc.nasa.gov/index.html
6. Fermi/LAT. http://fermi.gsfc.nasa.gov/
7. Cherenkov, Pavel A. (1934). "Visible emission of clean liquids by action of γ radiation". Doklady Akademii Nauk SSSR 2: 451. Reprinted in Selected Papers of Soviet Physicists,Usp. Fiz. Nauk 93 (1967) 385. V sbornike: Pavel Alekseyevich Cerenkov: Chelovek i Otkrytie pod redaktsiej A. N. Gorbunova i E. P. Cerenkovoj, M.,"Nauka, 1999, s. 149-153.
8. Catálogo de fuentes TeV online. http://tevcat.uchicago.edu/
9. Experimento H.E.S.S. http://www.mpi-hd.mpg.de/hfm/HESS/
10. Telescopios MAGIC. https://magic.mpp.mpg.de/
11. Telescopios VERITAS. http://veritas.sao.arizona.edu/
12. The Cherenkov Telescope Array. http://www.cta-observatory.org/
W3C HTML 4.0 | W3C CSS 2.0