El  Boletín
Sobre el Boletín
Contáctenos
Suscríbase
Quienes somos
Ver Anteriores

 Divulgación
Actividades de divulgación científica
El IAR en los medios

 Enlaces
Observatorio Astronómico de la Plata. Área de extensión
Museo astronómico de la Universidad Nacional de Córdoba
Centro de visitantes del Observatorio de Arecibo (Puerto Rico)
Observatorio de Astrofísica de Canarias. Actividades de difusión
European Southern Observatory. Actividades de Extensión
Space Telescope Science Institute. Actividades de extensión
NRAO. Información para docentes y estudiantes
 

  BOLETIN RADIO@STRONOMICO
 

Boletín de Divulgación
Científica y Tecnológica del IAR
ISSN: 1669-7871

 

Año 8 Número 30
Septiembre 2010


Llegamos al
Boletín Radio@stronómico Nº 30!
Después de 7 años de trabajo nos sentimos satisfechos por la repercusión que ha tenido nuestra publicación.
Publicaciones
 
Listado de los trabajos publicados por el IAR durante 2009.

 

El Instituto
Entrega de los Premios Houssay 2009
Nueva Doctora en Astronomía
Se realizó el "IAU Symposium 275: Jets at all Scales"
Proyecto AIRES (ex AMISR)
53ª Reunión Anual de la Asociación Argentina de Astronomía
Viajeros
Visitas
Divulgación de la Astronomía
Microquasares: fuentes de radiación de alta energía en nuestra galaxia
Durante una parte de su vida la fuente de energía de las estrellas es la fusión nuclear. Las regiones centrales de las estrellas son tan densas y calientes que los núcleos atómicos que componen el material estelar pueden fusionarse para dar núcleos más pesados. Este proceso libera una gran cantidad de energía, calentando el gas hasta temperaturas de millones de grados.
 
 
  Llegamos al Boletín Radio@stronómico Nº 30!
Después de 7 años de trabajo nos sentimos satisfechos por la repercusión que ha tenido nuestra publicación.
 
El Boletín surgió como una publicación interna del IAR cuyos lectores pertenecían solamente a la institución, a lo largo de este tiempo se fueron sumando nuevos suscriptores que se multiplican en cada emisión.
 
Agradecemos el apoyo y nos proponemos seguir trabajando como hasta ahora.
 Boletín Radio@stronómico
El Boletín Radio@stronómico es una publicación trimestral, donde se incluyen noticias relacionadas con la Astronomía y más específicamente la Radioastronomía. Es un vehículo de comunicación que nos permite dar a conocer las novedades y actividades desarrolladas en el Instituto.

A partir del número 11 el Boletín cuenta con su número de ISSN. El International Standard Serial Number (ISSN) es un número internacional normalizado que se asigna a las publicaciones periódicas, o sea a todas aquellas publicaciones que aparecen a intervalos regulares o irregulares de tiempo, y a las que comunmente se las conoce como revistas. Este número identifica a la publicación en forma única y se tramita a través del Centro Argentino de Información Científica y Tecnológica (Caicyt).

Es importante para nosotros seguir trabajando para hacerles llegar nuestro Boletín. Desde ya estamos agradecidos y los instamos a comunicarse con nosotros para plantearnos cualquier consulta o sugerencia.
 Entrega de los Premios Houssay 2009
Ampliar El 17 de agosto la presidenta de la Nación, Dra. Cristina Fernández de Kirchner junto al ministro de Ciencia, Tecnología e Innovación Productiva, Dr. Lino Barañao, entregaron los premios Premios Houssay (para investigadores menores de 45 años) y Premios Houssay Trayectoria (para investigadores mayores de 45 años) divididas en ocho áreas de conocimiento cada una.
 
Los premios Houssay son un reconocimiento a las contribuciones de los investigadores en la producción de nuevos conocimientos; el impacto social y productivo de las innovaciones tecnológicas y la formación de recursos humanos.
 
La organización de este premio depende de la secretaría de Planeamiento y Políticas y la evaluación de los postulantes de un Consejo Asesor del Ministerio de Ciencia, Tecnología e Innovación Productiva de la Nación, integrado por reconocidas personalidades del sector científico y académico nacional.
 
En el área Ciencias de la Tierra, del Agua y de la Atmósfera, Astronomía, el premio le fue otorgado al doctor Gustavo Esteban Romero, vicedirector de nuestro Instituto.
 
El Dr. Gustavo E. Romero obtuvo en 1991 la licenciatura en Física en la Universidad Nacional de La Plata y el doctorado en Física en 1995. Realizó un posgrado en "Physical Processes in AGNs" en el Instituto Astronómico y Geofísico de la Universidad de San Pablo, Brasil y numerosas estadías de investigación en centros de Alemania, Francia, España, Italia, Holanda y China. Es Investigador Principal del Conicet desde 2007. Es Profesor Titular Ordinario en la Universidad Nacional de la Plata. Sus trabajos han sido desarrollados principalmente en el área de la Astrofísica de las Altas Energías.
 
  Nueva Doctora en Astronomía
El día 20 de Septiembre de 2010, la Lic. Anabella Araudo defendió con éxito su Trabajo de Tesis Doctoral para optar por el título de Doctor en Astronomía obteniendo la máxima calificación (10), en la Facultad de Ciencias Astronómicas y Geofísicas de la UNLP (FCAGLP).
 
El título de la misma es "Emisión no térmica asociada a ondas de choque astrofísicas" y fue dirigida por el Dr. Gustavo E. Romero.
 
El jurado estuvo constituído por los Dres. Ana Maria Platzeck (FCAGLP), Osvaldo Civitaresse(Facultad de Ciencias Exactas UNLP) y Felix Mirabel (IAFE).
 
Esta tesis fue completada mediante una beca doctoral otorgada por el CONICET.
 
La flamante Dra. Araudo continuará trabajando en el tema en el IAR con una beca postdoctoral del CONICET, bajo la dirección del Dr. Gustavo E. Romero.
 
Consultada acerca de la misma, la Dra. Araudo nos comenta: "Los trabajos a futuro serán una continuación de lo iniciado durante la tesis. Queremos seguir estudiando las protoestrellas de gran masa y en particular su emisión a altas energías. Por otro lado, queremos desarrollar el estudio de la interacción de jets de núcleos activos de galaxias (aGNs)".
 
  Se realizó el "IAU Symposium 275: Jets at all Scales"
Ampliar
 
Tal como habíamos anunciado, durante la semana del 13 al 17 de septiembre de 2010 se realizó en la ciudad de Buenos Aires, Argentina, el Simposio No. 275 de la International Astronomical Union (IAU).
 
El Simposio No. 275, titulado "Jets at all Scales", estuvo dedicado al estudio y discusión de todo tipo de eyecciones y flujos de materia en contextos astrofísicos, desde los producidos por proto-estrellas hasta agujeros negros supermasivos.
 
El evento, además, estuvo dedicado a festejar los 65 años del Dr. Felix Mirabel, descubridor de los microquasares.
 
Los investigadores de nuestro Instituto presentaron los siguientes trabajos:
 
Charla:
- Radiation from matter entrainment in astrophysical jets
Anabella T. Araudo, Valentí Bosch-Ramon, Gustavo E. Romero
 
Posters:
- Non termal emisión from T Tauri stars
María V. del Valle, Gustavo E. Romero
 
- Magnetic field decay in accreting young neutron stars
Federico García, Deborah N. Aguilera, Gustavo E. Romero
 
- Exploring the association of Fermi sources with Young Stellar Objects
Pere Munar-Adrover, Josep María Paredes, Gustavo E. Romero
 
- Gamma-ray reprocessing in relativistic jets
Mariana Orellana, Leonardo J. Pelliza, Gustavo E. Romero
 
- A lepto-hadronic model for the high energy emisión from the jets of FR I radiogalaxies
Matías M. Reynoso, María C. Medina, Gustavo E. Romero
 
- Transient high-energy flares from accreting black holes
Florencia L. Vieyro, Gustavo E. Romero
 
- A leptonic/hadronic jet model for the broadband spectrum of the low-mass microquasar XTE J1118+480
Gabriela S. Vila, Gustavo E. Romero
 
  Proyecto AIRES (ex AMISR)
En el número 27 del Boletín Radio@stronómico se informó sobre una serie de reuniones y estudios realizados en el predio del Instituto Argentino de Radioastronomía (IAR), a los fines evaluar la posibilidad de instalar en el mismo un radar de dispersión incoherente denominado "Advanced Modular Incoherent Scatter RADAR (AMISR)".
 
Los estudios realizados en el IAR abarcaron varios aspectos (presencia de interferencias en la banda de trabajo del instrumento, características climáticas y de suelo, cielo visible desde el lugar, disponibilidad de energía eléctrica y de comunicaciones vía Internet, etc.). Los resultados derivados de estos estudios y del análisis de las bases de datos climáticos existentes en el IAR, mostraron que nuestro Instituto reune las condiciones necesarias como para albegar tal instrumento. Estudios llevados a cabo en diciembre de 2009 en Poker Flat (Alaska) en los alrededores de un instrumento similar al que se planea instalar en el IAR, mostró que el funcionamiento del mismo no representa ningún riesgo potencial para el medio ambiente.
 
Luego de estos estudios preliminares, los Drs D. Janches (North West Research Associates, CRA Division, EEUU) y el Dr. C. Brunini (Facultad de Ciencias Astronómicas y Geofísicas, Grupo GESA, UNLP) remitieron a principios de 2010 una propuesta de financiamiento del proyecto AIRES (acrónimo de Argentine Ionospheric Radar Experimental Station) (un símil del AMISR) a la National Science Foundation (NSF) de los Estados Unidos.
 
A fines de agosto de 2010 la NSF aprobó un subsidio de 2,5 millones de dólares para financiar la fase inicial del instrumento que será instalado en el IAR. Dicho instrumento podría entrar en funcionamiento hacia el año 2013.
 
En un futuro cercano deberán iniciarse las obras necesarias para la instalación del instrumento AIRES. Los investigadores locales responsables del proyecto se encuentran abocados a conseguir los fondos necesarios para llevar adelante las obras de infraestructura necesarias para albergar AIRES.
 
Más información: AMISR
  53ª Reunión Anual de la Asociación Argentina de Astronomía
AAA
Como todos los años en el mes de setiembre la Asociación Argentina de Astronomía (AAA) convoca a científicos nacionales y extranjeros para participar de este evento, el más importante a nivel nacional en esta área. Esto permite comunicar resultados, intercambiar ideas, desarrollar nuevos proyectos y acceder a los últimos avances logrados en Astronomía.
 
Este año la reunión se llevó a cabo entre los días 20 al 24 de septiembre, en la ciudad de Salta, organizada por el Consejo de Investigación de la Facultad de Ciencias Exactas de la Universidad Nacional de Salta y el Instituto de Astronomía Teórica y Experimental de la Universidad Nacional de Córdoba (IATE) del CONICET.
 
El personal del IAR presentó los siguientes trabajos:
 
- Alto Chorrillo: otra alternativa para instalar una antena para ondas milimétricas y submilimétricas
F. A. Bareilles, R. Morras, F. P. Hauscarriaga, J. C. Olalde, L. Guarrera & E. M. Arnal
 
- GS100-02-41: A new HI supershell in the outer part of the Galaxy
L. A. Suad, E. M. Arnal, S. Cichowolski & J. C. Testori
 
- Thermodynamics of regular black hole interiors
C. A. Correa, G. E. Romero & D. Pérez
 
- Monitoreo óptico 2009 de η Carinæ y el evento "tipo eclipse"
E. Fernández-Lajús, C. Fariña, M. A. Schwartz, N. E. Salerno, C. von Essen, F. N. Giudici, J. P. Calderón, A. F. Torres, M. C. Scalia1 & C. S. Peri
 
  Viajeros
  • Los Dres. Jorge A. Combi y Gustavo E. Romero participaron del congreso "The Multi-Wavelength View of Hot, Massive Stars (39th Liège International Astrophysical Colloquium)" realizado en Liège, Bélgica entre los días 12 al 16 de julio. El Dr. Romero además de presentar su trabajo fue miembro del Comité Científico Organizador (SOC).
     
  • El Dr. Gustavo E. Romero fue miembro del Comité Científico Organizador (SOC) y dio una charla invitada en el "Probing Strong Gravity with Gravitational and Electromagnetic Waves. 38th COSPAR Scientific Assembly Event H02" realizado entre el 18 y el 25 de julio en la ciudad de Bremen, Alemania. Del 30 de agosto al 11 de septiembre el Dr. Romero fue profesor invitado del "XIV Brazilian School on Cosmology and Gravitation", que se realizó en Mangarativa, Rio de Janeiro - Brazil, donde dictó el Seminario avanzado "Philosophical problems of space-time theories".
     
  • El Dr. Jorge A. Combi estuvo trabajando en la Universidad de Jaén, España, con sus tres tesistas en los primeros días del mes de julio. Posteriormente estuvo en Atenas, Grecia, trabajando con el Dr. Manolis Plionis en el Institute of Astronomy & Astrophysics, National Observatory of Athens, (IAA-NOA).
     
  • La Dra. Cristina Cappa fue profesora invitada por el Departamento de Física y Astronomía de la Universidad de Valparaíso, para dictar un curso de tres semanas de duración de "Medio interestelar" entre el 5 y el 30 de agosto.
     
  • La bibliotecaria Claudia Boeris dictó el Curso/Taller "Catalogación con AACR2 y MARC 21 usando Catalis" invitada por la Universidad de la Patagonia San Juan Bosco. Comodoro Rivadavia entre el 28 de junio y el 1 de julio de 2010. Bibliotecarios e informáticos de la Biblioteca Central de la Universidad de la Patagonia San Juan Bosco compartieron cuatro días en un taller donde los bibliotecarios pudieron actualizarse en la aplicación de las Reglas de Catalogación Angloamericanas (AACR2) y el formato MARC 21 y ponerse en contacto con el software de catalogación Catalis mediante prácticas intensivas, con la guía de la bibliotecaria Claudia Boeris (IAR-Conicet). Los informáticos por su parte, trabajaron con el Lic. Fernando Gómez (Instituto de Matemática de Bahía Blanca. INMABB-Conicet), interiorizándose en el funcionamiento interno del software y el aprendizaje de tareas de administración.
  •  Visitas
  • El Dr. Matías Reynoso estuvo realizando una visita a nuestro Instituto para trabajar con el Dr. Gustavo E. Romero en el estudio de procesos físicos relacionados con la producción de neutrinos en contextos astrofísicos.
  • Microquasares: fuentes de radiación de alta energía en nuestra galaxia
    Por la Lic. Gabriela Vila
    Durante una parte de su vida la fuente de energía de las estrellas es la fusión nuclear. Las regiones centrales de las estrellas son tan densas y calientes que los núcleos atómicos que componen el material estelar pueden fusionarse para dar núcleos más pesados. Este proceso libera una gran cantidad de energía, calentando el gas hasta temperaturas de millones de grados. La presión que ejerce este gas caliente evita que la estrella colapse debido a su propia gravedad.
     
    En una primera etapa el combustible nuclear es el hidrógeno, el elemento más liviano de la Tabla Periódica: dos núcleos de hidrógeno se fusionan para dar un núcleo de helio, el siguiente elemento más pesado. Cuando todo el hidrógeno se ha consumido comienza la fusión del helio para dar carbono, oxígeno y otros elementos pesados. A medida que la estrella evoluciona a través de las distintas etapas de combustión, dependiendo principalmente del valor su masa, pueden ocurrirle distintos fenómenos. En particular las estrellas pierden masa por medio de fuertes vientos (como lo hace el Sol a través del viento solar), e incluso en algunos casos pueden eyectar completamente sus capas externas en forma violenta.
     
    El proceso de fusión en el núcleo continúa hasta que este queda compuesto principalmente por hierro. Dada su particular estructura, cuando dos núcleos de hierro se fusionan no se libera energía, sino que por el contrario es necesario entregarles energía para que fusionen. La estrella se ha quedado entonces sin combustible y comienza a colapsar bajo el efecto de su propia gravedad.
     
    La evolución posterior de la estrella depende de la masa que reste en el núcleo. Si la masa es menor a aproximadamente 1.4 veces la masa del Sol(1) (MSol ) la estrella es capaz de detener su colapso y se forma una enana blanca. Las enanas blanca son estrellas "muertas", que se han quedado sin fuentes de energía y se apagan lentamente a medida que el gas se va enfriando. Las enanas blancas tienen radios característicos de unos 7000 km (similares al radio de la Tierra) y la densidad en su interior es muy alta, típicamente de 106 g/cm3 (una tonelada por cm3). Debido a que la densidad es tan alta la materia no se comporta siguiendo las leyes de la Termodinámica clásica, sino que se rige por las leyes de la Mecánica Cuántica.
     
    Si la masa del núcleo remanente es mayor a 1.4 MSol pero menor que aproximadamente 3 MSol , la estrella es aún capaz de detener su colapso, pero en lugar de una enana blanca termina su vida como una estrella de neutrones. Las estrellas de neutrones son aún más compactas que las enanas blancas, con radios característicos de unos 10 km y densidades de hasta 1015 g/cm3. Una variedad de fenómenos complejos ocurren alrededor de estos objetos. Los sistemas conocidos como púlsares son estrellas de neutrones con campos magnéticos muy fuertes.
     
    Cuando la masa remanente en el núcleo estelar es mayor que el límite máximo para que se forme una estrella de neutrones, la estrella no es capaz de detener su colapso y se contrae hasta que se forma un agujero negro. Un agujero negro es una región del espacio (estrictamente del espacio-tiempo) limitada por una superficie conocida como horizonte de eventos.(2) El horizonte de eventos tiene la particularidad de que una vez que se atraviesa no se puede volver a salir. Nada que cruza el horizonte de eventos, ni siquiera la luz, puede volver a escapar, y cae inevitablemente hacia el centro del agujero negro. La existencia de los agujeros negros es predicha por las ecuaciones de la Teoría de la Relatividad General formulada por Albert Einstein.
     
    No es posible observar un agujero negro directamente, así que su presencia debe inferirse indirectamente por las perturbaciones que generan en la región que los rodea. Existe fuerte evidencia de que existen en el Universo agujeros negros con masas desde algunas veces la masa del Sol, hasta millones y miles de millones de masa solares. Estos agujeros negros supermasivos ocupan los centros de muchas galaxias, incluyendo la nuestra, donde existe un agujero negro de unos 4 millones de masas solares. En lo que sigue nos ocuparemos de lo que puede ocurrir en el entorno de los agujeros negros de algunas masas solares, de los que se cree hay un gran número en nuestra galaxia.
     
    Los agujeros negros de masa solar y las estrellas de neutrones no siempre están aislados: pueden formar sistemas binarios junto con una estrella compañera ordinaria.(3) En estos sistemas una parte de la materia perdida por la estrella (ya sea en forma de vientos, o por algún otro mecanismo) cae hacia el objeto compacto (la estrella de neutrones o el agujero negro) a causa de la intensa atracción gravitatoria que este ejerce. Este proceso se conoce como acreción. El gas se calienta a medida que es acretado y comienza a emitir radiación electromagnética. Esta radiación es muy energética y ocupa típicamente la banda de los rayos X,(4) por lo que estos sistemas reciben el nombre de binarias de rayos X. Hay más de 400 binarias de rayos X conocidas en nuestra galaxia (ver Figura 1), y también se han identificado algunas en galaxias vecinas.
     
    Ampliar
    Figura 1. Imagen en rayos X del centro de nuestra galaxia obtenida con el satélite Chandra. Los puntos pequeños son en su mayoría binarias de rayos X. El área blanca brillante en el centro de la imagen es el centro galáctico, que alberga un agujero negro supermasivo. Imagen disponible on-line en http://www-xray.ast.cam.ac.uk/xray_introduction/Blackholebinary.html.
     
    El proceso de acreción de materia es complejo, formándose en realidad un sistema con varias componentes. La Figura 2 muestra una representación artística de una binaria de rayos X.
     
    Ampliar
    Figura 2. Representación artística de un microquasar. Se muestran las componentes más importantes del sistema: la estrella compañera, el disco de acreción, la corona y los jets. El objeto compacto (un agujero negro o una estrella de neutrones) se ubica en el centro del disco de acreción. Este esquema fue realizado con el programa "BinSim" desarrollado por Rob Hynes, disponible on-line en http://www.phys.lsu.edu/~rih/binsim/.
     
    Como el objeto compacto está siempre en rotación la materia no cae radialmente hacia él, sino que lo hace más lentamente y siguiendo una trayectoria de tipo espiral. Se forma entonces un disco alrededor del objeto central, conocido como disco de acreción. La materia en la parte más interna del disco de acreción está muy caliente, y puede a su vez "inflarse" formando una nube de gas caliente y menos denso llamada corona. Tanto la corona y el disco de acreción emiten rayos X. Finalmente, es posible que una fracción de la materia en acreción no sea tragada por el objeto compacto, si no que sea expulsada del sistema en forma de dos chorros colimados (con un ángulo de apertura pequeño) de partículas o jets. A las binarias de rayos X que presentan jets se las denomina microquasares.
     
    Los microquasares deben su nombre a que comparten muchas características con los quasares, fuentes extragalácticas conocidas con anterioridad que también presentan eyección de jets. Los quasares (llamados así por la abreviatura de su nombre completo en inglés, quasi-stellar radio sources, fuentes de radio cuasi-estelares) son núcleos de galaxias donde existe un agujero negro supermasivo, que acreta materia del medio interestelar y es capaz de lanzar jets que se propagan por distancias de millones de años luz. Los quasares perteneces a un tipo más general de núcleos galácticos, los llamados núcleos activos de galaxias (AGN, Active Galactic Nuclei). Los microquasares parecen ser entonces versiones en pequeña escala de los quasares. Una comparación entre ambos tipos de fuentes, destacando sus analogías, se muestra en el esquema de la Figura 3.
     
    Ampliar Figura 3. Comparación entre un quasar y un microquasar. Ambos sistemas comparten (con diferentes escalas de longitud, masa y tiempo) ciertas características, como un objeto central acretante, un disco de acreción y jets. Los procesos físicos básicos que operan en ambos sistemas son los mismos, aunque la presencia de la estrella compañera en los microquasares da origen a cierta fenomenología distinta. Imagen disponible en la página personal del Dr. Félix Mirabel, http://www.sc.eso.org/~fmirabel/.
     
    El primer microquasar fue descubierto por Félix Mirabel, Luis Felipe Rodríguez y colaboradores en 1992. Se trata de la fuente 1E140.7-2942, cuyos jets fueron claramente observados debido a su emisión en ondas de radio (ver Figura 4). La materia que forma los jets de los microquasares es lanzada a velocidades cercanas a la de la luz; se dice entonces que las eyecciones son relativistas.(5) Los jets transportan una cantidad enorme de energía cinética, y pueden propagarse por distancias de miles de millones de km antes de frenarse o destruirse por interacción con el medio interestelar.(6) En algunos casos los jets son tan poderosos que pueden modificar significativamente la región que los rodea, como se muestra en la Figura 4 en el caso de los jets del microquasar Cygnus X-1.
     
    Ampliar Ampliar
    Figura 4. Izquierda: imagen en radio de los jets del microquasar 1E140.7-2942, el primero en ser descubierto. Esta imagen fue tapa de la revista Nature en 1992 (Nature, 358, 215, 1992) y se encuentra disponible en la página personal del Dr. Mirabel, http://www.sc.eso.org/~fmirabel/. Derecha: imagen en radio de la nebulosa que rodea al microquasar Cygnus X-1. Esta nebulosa fue "inflada" por acción de los jets; la región brillante en forma de arco es la zona donde el jet se frena por interacción con el medio interestelar. El recuadro en la parte inferior derecha de la imagen es una ampliación de la región más cercana al agujero negro donde los jets están bien colimados. Del trabajo de Gallo et al., Nature 436, 819-821, 2005.
     
    Los jets en los microquasares no son permanentes, sino que las fuentes alternan períodos con jets y sin jets. Cuando presenta jets se dice que el sistema está en el estado low-hard, y cuando no en el estado high-soft. El espectro radiativo en ambos estados es diferente: en el estado high-soft domina la emisión del disco de acreción, mientras que en low-hard la de la corona y posiblemente los jets.
     
    El proceso físico que permite el lanzamiento de los jets no está aún hoy completamente entendido, aunque en general se acepta la idea de que está fuertemente relacionado con el campo magnético que existe en las cercanías del objeto compacto. Otros aspectos de la propagación de los jets, como por ejemplo el mecanismo que los mantiene colimados sobre grandes distancias, o las inestabilidades que pueden propagarse en el gas y llegar a destruirlos, son también problemas abiertos. El estudio de estos tópicos se aborda hoy en buena parte por medio de grandes y complejas simulaciones numéricas.
     
    La composición de la materia que forma los jets también es desconocida. Se sabe por cierto que una fracción deber ser electrones muy energéticos o relativistas. Su presencia se infiere directamente del espectro de emisión en ondas de radio de los jets. La forma del espectro de radio indica claramente que la emisión se debe a un proceso conocido como radiación sincrotrón, que es él tipo de radiación que emiten partículas muy energéticas, en este caso electrones, cuando son aceleradas en presencia de un campo magnético.
     
    Aunque se detectan por su emisión característica en radio, el espectro radiativo de los jets abarca casi todo el espectro electromagnético, desde radio hasta rayos X, y posiblemente rayos gamma (ver más abajo). Además de la radiación sincrotrón, otros procesos físicos pueden contribuir al espectro de emisión los jets de microquasares. Estos procesos involucran la interacción de las partículas relativistas en el jet con otras partículas o con radiación, que pueden provenir del mismo jet o de la estrella compañera. Se dice que el espectro de emisión de los jets es no térmico, ya que radian por mecanismos diferentes del que lo hacen, por ejemplo, las estrellas normales o el disco de acreción. En estos casos se dice que el espectro es térmico, ya que la radiación es la que emite el gas por el sólo hecho de estar a temperatura muy alta. En la Figura 5 se muestra el espectro (no térmico) en rayos X de Cygnus X-1, junto con el espectro (térmico) del Sol.
     
    Ampliar Ampliar
    Figura 5. Izquierda: espectro de emisión en rayos X del microquasar Cygnus X-1 en el estado low-hard. Derecha: espectro continuo de emisión del Sol (en negro), más el espectro teórico de emisión de un cuerpo a una temperatura de aproximadamente 6000º C (en verde), que es la temperatura de la superficie solar. El primero es un ejemplo de espectro de origen no térmico y el segundo un espectro térmico.
     
    Se han propuesto algunos mecanismos que explican de qué manera podrían acelerarse partículas eficientemente hasta energías relativistas en las condiciones físicas presentes en los jets. Surgen aquí sin embargo dos preguntas: ¿pueden por estos mecanismos acelerarse además de electrones otros tipos de partículas, como por ejemplo protones, si es que existen en los jets?, ¿es posible que estas partículas alcancen energías tan altas como para emitir rayos gamma, la radiación de más alta energía del espectro electromagnético?
     
    Desde hace algunos años se sabe que la respuesta a la segunda pregunta es que, en efecto, al menos algunos microquasares son fuentes de rayos gamma. Hasta el momento cuatro microquasares han sido detectados a altas energías. En algunas fuentes la emisión es persistente, mientras que en otras (como es el caso de Cygnus X-1) se han observado fulguraciones transitorias. Imágenes de los microquares LS 5039 y Cygnus X-3, de los cuales se ha detectado radiación gamma, se muestran en la Figura 6.
     
    Ampliar Ampliar
    Figura 6. Izquierda: imagen en radio del microquasar LS 5039. La posición de este objeto coincide con la de una fuente de rayos gamma detectada con el instrumento EGRET del satélite Compton en la década de 1990. Imagen tomada del trabajo de Paredes, Martí, Ribó y Massi, Science, 288, 2340 (2000). Derecha: imagen en rayos gamma del microquasar Cygnus X-3 obtenida con el satélite Fermi en 2009. Cygnus X-3 ha sido detectado también por el satélite AGILE.
     
    Existe un gran interés en la detección de más binarias de rayos X a altas energías, por lo que son el blanco frecuente de observación con telescopios de rayos gamma tanto terrestres, como los arreglos de detectores de rayos gamma HESS en Namibia, VERITAS en los EEUU y MAGIC en España, como instalados a bordo de satélites, como el satélite Fermi de la NASA, el satélite italiano AGILE y el satélite INTEGRAL de la Agencia Espacial Europea (ver Figura 7). Ya se planea la construcción de nuevos telescopios de rayos gamma con mayor sensibilidad que permitirán detectar fuentes más débiles. En particular, para los próximos años se planea la construcción y entrada en funcionamiento de un nuevo arreglo de telescopios terrestres de rayos gamma llamado CTA (Cherenkov Telescope Array). CTA contará en realidad con dos arreglos, uno en el hemisferio norte y otro en el hemisferio sur, con el objetivo de lograr una cobertura lo más completa posible del cielo. La Argentina es parte del consorcio de países que integran el proyecto CTA, y se están llevando a cabo actualmente trabajos para identificar posibles sitios para el emplazamiento del arreglo sur en nuestro país.
     
    Ampliar Ampliar
    Figura 7. Izquierda: arreglos de telescopios detectores de rayos gamma MAGIC en La Palma, España (arriba) y HESS en Namibia (abajo). Derecha: el satélite de rayos gamma Fermi (antes conocido como GLAST) poco antes de ser lanzado.
     
    La detección de los microquasares a altas energías puede brindar información muy importante a la hora de responder a la primera de las preguntas planteadas. Se cree que la radiación gamma es emitida por las partículas relativistas en los jets. Sin embargo, para ser capaces de emitir radiación de tan alta energía, las partículas deben ser aceleradas hasta energías aún más altas. La energía máxima que pueden alcanzar las partículas depende tanto de cuán eficiente sea el mecanismo que las acelera como de cuán rápido pierden energía, ya sea mismo por radiación o por algún otro proceso. Los electrones son partículas "fáciles" de acelerar, pero a su vez también pierden energía muy rápidamente. Es posible entonces que la radiación de más alta energía en los jets sea emitida por protones relativistas, o por lo menos que la contribución de estas partículas sea significativa.
     
    Esta posibilidad está siendo explorada desde el punto de vista teórico por varios grupos en distintos lugares del mundo, incluyendo nuestro Instituto. Se trata de construir modelos (más o menos sencillos) de jets y calcular su espectro radiativo suponiendo que existen allí protones relativistas. El objetivo es poder comparar, en el futuro cercano, las predicciones teóricas con observaciones a altas energías. Los datos observacionales ayudarán, a su vez, a poder conocer al menos en forma aproximada el valor de algunos de los parámetros de entrada de los modelos teóricos.
     
    Además de su interés puramente astronómico, los microquasares constituyen buenos "laboratorios" para poner a prueba algunos modelos físicos (como los de aceleración de partículas) en condiciones extremas que no pueden reproducirse en nuestros laboratorios en Tierra.
     
    Por otro lado, al ser sistemas cercanos (en términos astronómicos) es posible estudiarlos en más detalle y aplicar lo aprendido al modelado de otros sistemas astrofísicos con jets fuera de nuestra galaxia, como los núcleos activos de galaxias y las erupciones de rayos gamma (GRBs, Gamma-Ray Bursts).(7)
     

    (1) La masa del Sol es de MSol = 2x1030 kg, aproximadamente 330.000 veces la masa de la Tierra. A la masa límite de 1.4 MSol se la conoce como masa de Chandrasekhar. Su valor fue determinado por el científico hindú Subrahmanyan Chandrasekhar en la década de 1930.
     
    (2) Para una definición rigurosa de agujero negro puede consultarse el apunte de la materia Introducción a la Astrofísica de Agujeros Negros, disponible on-line en http://www.iar.unlp.edu.ar/garra/AR/apunte_BH.html. También el Capítulo 4 del libro Compact Objects and their Emission, disponible en la biblioteca del IAR. Ambos textos son de autoría del Dr. Gustavo E. Romero y están escritos en idioma inglés. El libro contiene además capítulos dedicados a casi todos los temas mencionados en este artículo.
     
    (3) Estrella ordinaria significa aquí una estrella no colapsada, que aún se encuentra atravesando alguna etapa de combustión nuclear.
     
    (4) Se conoce como rayos X a aquella región del espectro electromagnético ocupada por la radiación con longitudes de onda entre, aproximadamente, 10-8 m y 10-11 m, lo que corresponde a frecuencias entre 3x1016 Hz y 3x1019 Hz. Los rayos X tienen energías entre 100 eV y 105 eV. El eV (electronvolt) es una unidad de energía muy utilizada en física de partículas elementales. Un eV es una cantidad de energía muy pequeña en términos de las unidades típicamente usadas para describir fenómenos macroscópicos de la vida cotidiana: 1 eV equivale, por ejemplo, a 1,6x10-16 Joules.
     
    (5) El valor de la velocidad de la luz en el vacío (que generalmente se nota con la letra c) es de 299.792,458 km/s. Las velocidades típicas a las que se propagan los jets de los microquasares son de 0.7 c - 0.8 c.
     
    (6) Algunas unidades de longitud muy usadas en astronomía son la unidad astronómica (UA ó AU), el parsec (pc) y el año luz (ly). Una unidad astronómica corresponde a la distancia media entre el Sol y la Tierra, 1 AU = 149,598 millones de km. Un parsec equivale a 3.1x107 millones de km, o 1 pc = 206.265 AU. Un año luz es la distancia recorrida por la luz en un año, 1 ly = 0.3 pc = 9x106 millones de km.
     
    (7) Las erupciones de rayos gamma ó gamma-ray bursts (GRBs), se producen cuando una estrella masiva colapsa para formar un agujero negro. En el proceso se producen jets que radian en rayos gamma. La duración típica de estas erupciones, conocidas en particular como gamma-ray bursts "largos", es de sólo unos 10 segundos. Sin embargo la energía liberada por un único GRB es mayor que la emitida por toda la galaxia en la que se produce. Son los eventos más energéticos del Universo.
     
     Actividades de Divulgación científica en el IAR
    El Área de Divulgación del IAR continúa su labor llevando a cabo las tradicionales visitas guiadas por el Instituto. Estas visitas guiadas para establecimientos educacionales consisten en proyección de material audiovisual, charla explicativa y recorrida por sus instalaciones.
     
    Las tareas de extensión son realizadas por estudiantes avanzados de la carrera de Astronomía, y por docentes e investigadores de la Institución.
    Los días de atención son los viernes, en dos turnos:
    • mañana (9:00 hs)
    • tarde (13:00 hs)
    Los turnos se pueden solicitar por teléfono, fax o e-mail a:
    Tel/Fax: (0221) 425-4909 y (0221) 482-4903
     
    Por razones de organización, las visitas guiadas se restringen al periodo comprendido entre principios de abril y principios de diciembre de cada año.

    Para mayor información:

    Visite nuestra página web:  http://www.iar.unlp.edu.ar/divulgacion.htm
      El IAR en los medios
    En esta sección encontrará artículos publicados en diversos medios acerca de las distintos actividades del IAR y su gente.
     
    - Un radiotelescopio y la retina artificial, proyectos en marcha- Clarín (03-09-2010)  Descargar Descargar
     
    - Científicos de la UNLP desarrollan el primer lanzador de satélites argentino - Diario Hoy (22-08-2010) Descargar Descargar
     
    - Conicet en La Plata - El Día (19-08-2010)  Descargar Descargar
     
    - El Conicet construye nuevos edificios - Diario Hoy (19-08-2010) Descargar Descargar
     
    - De la tierra al espacio - DeNeXos (10-08-2010) -  Descargar Descargar
     
    - Gefco transportará el satélite SAC-D/Aquarius - PuntoBiz (22-07-2010)  Descargar Descargar
     
    - Satélite argentino SAC-D Aquarius será puesto en órbita el 1º de abril de 2011 - Diario Mi País (29-06-2010) Descargar Descargar
     
    - Orgullo en la UNLP por premio Houssay a investigadores - El Día (19-08-2010) Descargar Descargar
     
    - Cuatro docentes platenses fueron distinguidos con el Premio Houssey - Diagonales (18-08-2010)  Descargar Descargar
     
    - Premios Houssay 2009 - Diario de Ciencias (18-08-2010) Descargar Descargar
     
    - Premios Houssay a la investigación científica - Argentina.AR (18-08-2010) Descargar Descargar
     
    - Premiaron a los científicos más destacados del país - Universia (18-08-2010) Descargar Descargar
     
    - Premiaron a los científicos más destacados del país - TodoAgro.com.ar (18-08-2010) Descargar Descargar
     
    - Máxima distinción para científicos de la UNLP - Plus Información (18-08-2010)  Descargar Descargar
     
    - Premio Houssey 2009: Premiaron a los científicos más destacados del país - Inforo (18-08-2010) Descargar Descargar
     
    - Investigadores de la UNLP recibieron el premio "Houssay" - 24Noticias.com (18-08-2010)  Descargar Descargar
     
    - Premiaron a los científicos más destacados del país - Diario Las Noticias (San Juan) (18-08-2010) Descargar Descargar
     
    - Cristina entrega los premios Houssay a la investigación científica - Ahora Educación (18-08-2010) Descargar Descargar
     
    - Máxima distinción para investigadores de la Universidad platense - Diario Hoy (18-08-2010) Descargar Descargar
     
    - Otorgaron los premios Houssay a 16 científicos sobresalientes - La Nación (18-08-2010) Descargar Descargar
     
    - La presidenta distinguió a dos científicos bahienses - La Nueva Provincia (18-08-2010) Descargar Descargar
     
    - Se entregaron los premios Houssay para los científicos - El Sol (Mendoza) (18-08-2010)  Descargar Descargar
     
    - Premiaron a los científicos más destacados del país - Turismo 530 (18-08-2010)  Descargar Descargar
     
    - Reciben premio 4 investigadores - Quilmes Presente (18-08-2010) Descargar Descargar
     
    - Reciben premio 4 investigadores - El Día (18-08-2010) Descargar Descargar
     
    - Otorgaron los premios Houssay a 16 científicos sobresalientes - Rafaela.com (Santa Fe) (18-08-2010) Descargar Descargar
     
    - Cristina Kirchner entregará los premios Houssay a la investigación científica - Jornada Online (Mendoza) (17-08-2010) Descargar Descargar
     
    - Distinguen al Investigador de la Nación en Ciencia y Tecnología - Terra.com (17-08-2010) Descargar
     
    - El bosque de los desmontes y los robos - El Día (25-07-2010) Descargar Descargar
     
    - El bosque de los desmontes y los robos - Quilmes Presente (25-07-2010) Descargar Descargar
     
    - Un nuevo satélite argentino, el SAC-D - Taringa! (06-07-2010) Descargar Descargar
     
    - Nuevo sistema informático en las bibliotecas de la Universidad - El Patagónico (03-07-2010) Descargar Descargar
     
    - Nuevo sistema informático en las bibliotecas de la Universidad - El Diario de Madryn (03-07-2010)  Descargar Descargar
     
     Quienes somos:
    Selección de contenidos y diagramación:
    Bib. Claudia Boeris
    C.C. Nelva Perón

    Asesoramiento científico:
    Dr. E. Marcelo Arnal

    Dirección:

    Camino Gral. Belgrano Km 40 (Parque Pereyra Iraola)
    Berazategui - Prov. de Buenos Aires - ARGENTINA

    Dirección Postal:

    Casilla de Correo No. 5
    1894 -Villa Elisa
    Prov. de Buenos Aires - ARGENTINA

    Teléfonos y FAX:

    Tel: (0221) 482-4903
    Tel/Fax: (0221) 425-4909

    Correo electrónico
    difusion@iar.unlp.edu.ar

     Ediciones Anteriores
    Año 1 Nº    1  - Junio de 2003
    Año 1 Nº    2  - Septiembre de 2003
    Año 1 Nº    3  - Diciembre de 2003
    Año 2 Nº    4  - Marzo de 2004
    Año 2 Nº    5  - Junio de 2004
    Año 2 Nº    6  - Setiembre de 2004
    Año 2 Nº    7  - Diciembre de 2004
    Año 3 Nº    8  - Marzo de 2005
    Año 3 Nº    9  - Junio de 2005
    Año 3 Nº  10 - Setiembre de 2005
    Año 3 Nº  11 - Diciembre de 2005
    Año 4 Nº  12  - Marzo de 2006
    Año 4 Nº  13  - Junio de 2006
    Año 4 Nº  14 - Setiembre de 2006
    Año 4 Nº  15 - Diciembre de 2006
    Año 5 Nº  16  - Marzo de 2007
    Año 5 Nº  17  - Junio de 2007
    Año 5 Nº  18 - Setiembre de 2007
    Año 5 Nº  19 - Diciembre de 2007
    Año 6 Nº  20  - Marzo de 2008
    Año 6 Nº  21  - Junio de 2008
    Año 6 Nº  22 - Setiembre de 2008
    Año 6 Nº  23 - Diciembre de 2008
    Año 7 Nº  24  - Marzo de 2009
    Año 7 Nº  25  - Junio de 2009
    Año 7 Nº  26 - Setiembre de 2009
    Año 7 Nº  27 - Diciembre de 2009
    Año 8 Nº  28 - Marzo de 2010
    Año 8 Nº  29 - Junio de 2010
    ©Instituto Argentino de Radioastronomía - (2010)