El  Boletín
Sobre el Boletín
Contáctenos
Suscríbase
Quienes somos
Ver Anteriores

 Divulgación
Actividades de divulgación científica
El IAR en los medios

 Enlaces
Observatorio Astronómico de la Plata. Área de extensión
Museo astronómico de la Universidad Nacional de Córdoba
Centro de visitantes del Observatorio de Arecibo (Puerto Rico)
Observatorio de Astrofísica de Canarias. Actividades de difusión
European Southern Observatory. Actividades de Extensión
Space Telescope Science Institute. Actividades de extensión
NRAO. Información para docentes y estudiantes
 

  BOLETIN RADIO@STRONOMICO
 

Boletín de Divulgación
Científica y Tecnológica del IAR

ISSN: 1669-7871

 

Año 13 Número 48
Marzo 2015


El Boletín Radio@stronómico es una publicación trimestral a través de la cual se difunden las actividades desarrolladas en nuestro Instituto y noticias relacionadas con la astronomía y la radioastronomía en el mundo.
 
Publicaciones
 
Listado de los trabajos publicados por el IAR durante 2014.
 
 
El Instituto
Nueva Doctora en Astronomía
Primer Encuentro Latinoamericano de Filosofía Científica
Ingreso de Personal de Apoyo
"ATNF Daily Astronomy Picture" del 8/02/2015
Nuevo Licenciado en Astronomía
Viajeros
Visitas
Divulgación de la Astronomía
¡Cygnus X-1 sigue dando que hablar!
Allá por los años 60, los astrónomos no contábamos con telescopios espaciales suficientemente potentes como para detectar la emisión en rayos X proveniente del espacio. En su lugar, debían utilizarse cohetes que sólo conseguían estar por encima de nuestra atmósfera por algunos minutos, lo cual es necesario pues la atmósfera absorbe gran parte (sino toda) la emisión en rayos X que llega desde el espacio, volviendo luego a la superficie Terrestre.
 
 
 Boletín Radio@stronómico
El Boletín Radio@stronómico es una publicación trimestral, donde se incluyen noticias relacionadas con la Astronomía y más específicamente la Radioastronomía. Es un vehículo de comunicación que nos permite dar a conocer las novedades y actividades desarrolladas en el Instituto.

A partir del número 11 el Boletín cuenta con su número de ISSN. El International Standard Serial Number (ISSN) es un número internacional normalizado que se asigna a las publicaciones periódicas, o sea a todas aquellas publicaciones que aparecen a intervalos regulares o irregulares de tiempo, y a las que comunmente se las conoce como revistas. Este número identifica a la publicación en forma única y se tramita a través del Centro Argentino de Información Científica y Tecnológica (Caicyt).

Es importante para nosotros seguir trabajando para hacerles llegar nuestro Boletín. Desde ya estamos agradecidos y los instamos a comunicarse con nosotros para plantearnos cualquier consulta o sugerencia.
  Nueva Doctora en Astronomía
El miércoles 17 de diciembre de 2014, en el Salón Meridiano de la Facultad de Ciencias Astronómicas y Geofísicas de La Plata (FCAG, UNLP), la Lic. Cintia Peri llevó a cabo la defensa de su Tesis Doctoral en Astronomía titulada "Emisión no térmica e Infrarroja en torno a estrellas de gran masa", la que fue aprobada con la calificación de "sobresaliente".
 
Esta tesis fue realizada bajo la Dirección de la Dra. Paula Benaglia.
 
El jurado de la tesis estuvo constituido por el Dr. Sergio Parón (IAFE-UBA), el Dr. Alberto Noriega Crespo (HST-EEUU) y el Dr. Roberto Gamen (IALP).
 
La Dra. Peri seguirá trabajando en el tema bajo la Dirección de la Dra. Benaglia mediante una beca postdoctoral del CONICET.
 
Ampliar
Durante la exposición
Ampliar
La Dra. Cintia Peri
Ampliar
Con la Dra. Benaglia
Ampliar
En el brindis posterior
 
 Primer Encuentro Latinoamericano de Filosofía Científica
Ampliar
Este año, en la Ciudad de Buenos Aires, se llevará a cabo el "Primer Encuentro Latinoamericano de Filosofía Científica", en honor a Mario Augusto Bunge. El evento se desarrollará del 23 al 26 de septiembre, en la Facultad de Filosofía y Letras de la Universidad de Buenos Aires.
 
El evento está orientado a un espectro amplio de participantes: científicos con vocación filosófica, filósofos con vocación científica, estudiantes, divulgadores y periodistas científicos.
 
La Conferencia incluirá contribuciones de importantes científicos y filósofos entre quienes se destacan: el mismo Mario A. Bunge, Gustavo E. Romero, Pablo M. Jacovkis, Diego Sarasola, Facundo Manes, Pablo Gaeta, Miguel A. Quintanilla, Rafael González del Solar, María Esther Burgos, Gerardo Primero, Pablo Lorenzano, Agustín Salvia, Martín Daguerre, Natalia Zavadivker, Georgina Binstock, Roxana Kreimer.
 
Este encuentro es auspiciado por el Instituto Argentino de Radioastronomía (IAR) y la Facultad de Filosofía y Letras de la UBA.
 
Para más información del Encuentro, los invitamos a visitar el sitio oficial: http://filosofia-cientifica.iar-conicet.gov.ar/index.php
  Ingreso de Personal de Apoyo
Por resolución 4556/14 de diciembre del año 2014 el CONICET ha designado al señor Luis González como miembro de la Carrera del Personal de Apoyo a la Investigación y Desarrollo.
 
El Sr. González obtuvo su título de Técnico Universitario en Electrónica en la Universidad Tecnológica Nacional - Facultad Regional Mendoza.
 
En nuestro Instituto realizará tareas en el Laboratorio de Electrónica en Instrumentación para RF y Equipos de Mediciones Electrónica, bajo la supervisión de los Ings. Daniel Perilli y Leandro García.
 
Sus antecedentes Laborales son:
- Becario del Laboratorio de Electrónica - Universidad Tecnológica Nacional - Facultad Regional Mendoza
- Encargado del Laboratorio de Electrónica - Universidad Tecnológica Nacional - Facultad Regional Mendoza
- Equipos de adquisición y transmisión de datos. Sistemas electrónicos e informáticos de prueba para detectores de superficie - Observatorio Pierre Auger - Malargüe - Mendoza
  "ATNF Daily Astronomy Picture" del 8/02/2015
Ampliar
El "ATNF Daily Astronomy Picture", la principal imagen diaria astronómica del mundo sur, del día domingo 8 de febrero corresponde a una investigadora del CONICET.
 
Se trata de la Dra. Paula Benaglia, Investigadora Independiente del CONICET, Vicedirectora nuestro Instituto y Profesora de la Facultad de Ciencias. Astronómicas y Geofísicas de la UNLP.
 
El "ATNF Daily Astronomy Picture" es una imagen astronómica realizada por el personal y los usuarios del Australia Telescope National Facility (ATNF).
 
Su objetivo es presentar los resultados más destacados de la ciencia y la ingeniería a partir de publicaciones recientes, actualizaciones técnicas, imágenes de telescopio, resúmenes de conferencias, etc.
 
Este sitio, inspirado en el "Astronomy Picture of the Day (APOD)" y el ASTRON/Jive Daily Image, comenzó en diciembre de 2014.
 
  Nuevo Licenciado en Astronomía
El Sr. Federico López Armengol, quien a partir del 1 de abril de 2015 se incorporará al nuestro Instituto como becario doctoral de CONICET bajo la dirección del Prof. Gustavo E. Romero, obtuvo su título de Licenciado en Astronomía el pasado 25 de febrero en la Facultad de Ciencias Astronómicas y Geofísicas de la UNLP.
 
Su trabajo de tesis se titula "Evolución cosmológica de agujeros negros y su relación con la Segunda Ley de la Termodinámica".
 
El trabajo presentado fue dirigido por el Dr. Romero, con la codirección de la Lic. Daniela Pérez.
El Lic. López Armengol recibió la máxima calificación.
 
Ampliar
Lic. Federico López Armengol
Ampliar
Brindis con sus directores de trabajo
  Viajeros
  • La Dra. Cristina E. Cappa realizó una estadía del 11 al 17 de enero en el Departamento de Astronomía de la Universidad de Chile para trabajar con la Dra. M. Rubio.
     
  • Entre los días 8 y 12 de febrero, los Dres. E. Marcelo Arnal y Ricardo Morras y el Ing. Juan José Larrarte participaron de varias reuniones vinculadas al Proyecto LLAMA en la ciudad de Salta y realizaron una visita a San Antonio de los Cobres.
     
  • El Dr. Gustavo E. Romero fue invitado por el Centro de Radioastronomía y Astrofísica de la Universidad Nacional Autónoma de México (UNAM), en la ciudad de Morelia, México, para dar un curso sobre "Scientific Philosohpy", el que se realizó entre los días 2 y 13 de marzo con notable asistencia de alumnos de postgrado de física, astronomía, geofísica, geología y matemáticas.
     
  • Los Dres. Manuel Fernández López y Cristina E. Cappa participaron del Congreso "Soul of High-Mass Star Formation", que se realizó en Puerto Varas (Chile) entre el 15 y el 20 de marzo, donde presentaron los trabajos:
    - "Zeeman Interferometric observations of CN(2-1) transitions with CARMA", Manuel Fernández López (Charla)
    - "IR dust bubble S24: Molecular gas and star formation", Cristina Cappa (Charla)
    - "IRDC DC341,231-0,268: molecular gas and star formation", J. Vásquez, V. Firpo, Ch. López-Carballo, M.M. Vazzano, C.E. Cappa y M. Rubio (Póster)
  •  Visitas
  • Entre los días 13 al 22 de marzo estuvieron en nuestro país los Dres. Eike Beitz y Jürgen Blum del Institut für Geophysik und extraterrestrische Physik, TU Braunschwei (Alemania) invitados para trabajar con la Dra. Gabriela Parisi.
    En su estadía de trabajo también realizaron charlas:
    - "The formation of chondrule dust rims and the collisional evolution of chondritic parent bodies" dictada el 16 de marzo en el Aula del IAR por el Dr. Eike Beitz.
    - "From dust to planetesimals - constraints from 25 years of laboratory experiments", dictada en la Facultad de Ciencias Astronómicas y Geofísicas (FCAGLP) el día 18 de marzo por el Prof. Dr. Jürgen Blum.
  •   ¡Cygnus X-1 sigue dando que hablar!
    Por la Dra. Carolina Pepe
    Allá por los años 60, los astrónomos no contábamos con telescopios espaciales suficientemente potentes como para detectar la emisión en rayos X proveniente del espacio. En su lugar, debían utilizarse cohetes que sólo conseguían estar por encima de nuestra atmósfera por algunos minutos, lo cual es necesario pues la atmósfera absorbe gran parte (sino toda) la emisión en rayos X que llega desde el espacio, volviendo luego a la superficie Terrestre. En una de estas misiones fue que identificaron por primera vez a la binaria de rayos X llamada Cygnus X-1 [1]. Más tarde, en diciembre de 1970, se lanzó al espacio el primer satélite cuyo propósito era investigar la emisión en rayos X: Uhuru (que en Swahili significa "libertad"). Este satélite confirmó la existencia de la fuente Cygnus X-1 y midió la posición de la fuente junto a otras características interesantes de la misma [2].
     
    Las binarias de rayos X constan de una estrella donante y un objeto compacto, el cual acreta el material entregado por la primera. Llamamos proceso de acreción a la ingesta del material que llega a las inmediaciones del objeto compacto que puede ser o bien una estrella de neutrones o bien un agujero negro. Cygnus X-1 es el candidato con más alta probabilidad de contener un agujero negro, dentro de las binarias de rayos X de nuestra Galaxia. Un agujero negro es, a grandes rasgos, un objeto para el cual la intensidad del campo gravitatorio que genera es tan alta que ni la luz puede salir de él (para más detalles ver este post). Cuánto más grande es el cociente M/R (donde M es la masa del objeto y R su radio), más compacto es el objeto en cuestión. Esto los hace unos de los objetos más fascinantes que pueden encontrarse en el espacio. Cómo es posible que Cygnus X-1 haya sido detectada en rayos X y contenga un agujero negro, si estos últimos no permiten siquiera que escape la luz? En otras palabras, cómo detectamos un agujero negro?
     
    Por definición, los agujeros negros parecerían indetectables. Sin embargo, sus efectos sobre el entorno son imponentes y a partir de ellos podemos inferir la presencia de estos objetos. Ahora bien, qué tipo de información nos llega desde el espacio? En qué idioma nos comunicamos con las estrellas y todos los objetos del cielo? Si bien existen varios tipos de "portadores de información" (ver este post sobre rayos cósmicos), la radiación electromagnética (o, simplemente, radiación) es nuestro principal canal de comunicación con el espacio. La luz es radiación. Las ondas de radio, las de telecomunicaciones, las del microondas... todo eso también es radiación! Por qué no vemos toda la radiación? Nuestros ojos no están preparados para ello, solo vemos lo que se llama luz visible; la diferencia entre todos los tipos de radiación mencionadas es la energía que lleva esa radiación. Para ordenar las cosas, los científicos hemos nombrado de distinta manera a la radiación, según su energía: radio, microondas, infrarrojo, visible, ultravioleta, rayos X (como los de Cygnus X-1!) y rayos gamma. En esta lista están ordenados de menor a mayor energía. A todo este "abanico" de energías posibles de la radiación se lo llama espectro electromagnético. Como dije antes, nuestros ojos no pueden ver la radiación X de Cygnus X-1 (ni de ningún otro objeto!) pero sí pueden hacerlo telescopios preparados especialmente para ello, como Uhuru. Así, entonces, nos llega la información.
     
    En el caso de Cygnus X-1, la estrella compañera es una estrella masiva con intensos vientos, siendo este material el acretado por el objeto compacto. Este material se calienta durante el proceso de acreción y, dado que la materia acretada posee momento angular (i.e., está girando en torno al agujero negro), se forma un disco de acreción que alcanza temperaturas de hasta 107 K. Como todos los cuerpos cuya temperatura se encuentra por encima del cero absoluto de temperatura emiten radiación, este disco, con sus temperaturas tan altas, es uno de los responsables de lo que se llama emisión térmica (o radiación térmica) de la binaria de rayos X. También existe una nube de gas caliente y menos densa llamada corona, consecuencia de la expansión de las zonas internas del disco de acreción debido a las altas temperaturas que allí se alcanzan. La corona, igual que el disco, emite en rayos X. En la Fig. 1 se muestra la relación entre la temperatura y el rango del espectro electromagnético en el cual emite un cuerpo a dicha temperatura. Sin embargo, no se le puede atribuir al disco la emisión de rayos X más energéticos (hasta los MeV) [3] detectada en Cygnus X-1, pues esto implicaría temperaturas todavía más altas que la observada. Así, la presencia de tal emisión e incluso algunas detecciones todavía más energéticas (en rayos gamma) [4] revelaron que estos objetos son capaces de acelerar partículas a velocidades muy altas, cercanas a la de la luz. Estas son las responsables de lo que llamamos emisión no térmica. Además, se descubrió la presencia de una intensa emisión colimada, en radio, a la que se llama jet [5]. Éstos son eyecciones del material entregado por la estrella que no llega a ser "tragado" por el agujero negro sino que son lanzados con un ángulo de apertura muy pequeño, alcanzando distancias unas 100 veces más grandes que la distancia de separación entre el objeto compacto y la estrella donante. Aquellas binarias de rayos X que presentan jets reciben el nombre de microcuásares (en la Fig. 2 muestro un esquema de los elementos de un microcuásar). Este llamativo nombre se debe a la similitud que presentan estos objetos con los cuásares. Éstos, llamados así por la abreviatura de su nombre en inglés quasi-stellar radio sources (fuentes de radio cuasi-estelares) son núcleos de galaxias donde existe un agujero negro supermasivo (que puede tener de millones a miles de millones de veces la masa de nuestro Sol!) que acreta materia del medio interestelar que lo rodea y es capaz de lanzar jets que recorren distancias enormes (millones de años luz!). Resulta que los microcuásares parecerían ser objetos a escala de los cuásares. Cabe entonces preguntarse: si se ha observado en Cygnus X-1, y otros microcuásares, emisión no térmica, entonces... cuál es el mecanismo de emisión?
     
    Cuando las partículas, electrones y protones, que forman el jet alcanzan velocidades relativistas (i.e., cercanas a la velocidad de la luz), su energía es suficiente para que distintos procesos ocurran. Al día de hoy la presencia de electrones en los jets de microcuásares está aceptada mientras que la presencia de protones sólo ha sido confirmada en dos microcuásares (SS 433 [6] y 4U 1630C47 [7]) y este es un tema de discusión actual. Por ejemplo, si la energía de los fotones (un fondo de fotones posible es el producido por la estrella compañera) es mayor que cierto umbral entonces pueden crearse otro tipo de partícula subatómica, piones, a partir de la interacción de estos fotones con protones de alta energía. Este proceso es relevante para la emisión de radiación de alta energía (X y gamma) pues el tiempo que transcurre hasta la desintegración (también llamada decaimiento) de los piones es corto y, al hacerlo, emiten fotones energéticos. Este es solo un ejemplo de todo un abanico de procesos relativistas que pueden ocurrir. A las partículas que conforman la distribución inicial de partículas energéticas las llamamos partículas primarias, mientras que aquellas que son el resultado de la interacción de estas partículas primarias con fondos de radiación o materia, las llamamos partículas secundarias. En algunos casos, como el proceso mencionado previamente, las vidas medias de las partículas secundarias son cortas y su posterior decaimiento produce fotones, generando así la radiación asociada al proceso (de aquí el nombre de procesos radiativos). En otros casos tales como el proceso Compton inverso, en el que un fotón simplemente choca con un electrón energético de modo tal que el último le cede energía al primero, la radiación no es consecuencia de ningún decaimiento. Varios procesos similares se llevan a cabo en el jet e, incluso, se entrelazan: la radiación resultante de cierto proceso es reprocesada al interactuar con otras partículas (ya sean primeras o secundarias) dando lugar al espectro radiativo final. Este es un problema complejo, todavía vigente al día de hoy. Como dije anteriormente, todavía no existe consenso sobre la composición de los jet (si tiene electrones y protones o solo los primeros) y se contrastan los resultados de los dos tipos de modelos (con y sin protones) con las observaciones, de manera de decidir qué escenario es favorecido [8].
     
    Es interesante notar que los microcuásares no emiten jets de manera permanente: el estado low-hard es caracterizado por la presencia de jets, dominado por la emisión no térmica, mientras que en el estado high-soft no hay jets y la emisión térmica domina el espectro de la fuente. También existe un estado de transición entre dichos estados llamado intermediate. En el caso de Cygnus X-1, ha sido observada en todos sus estados, aunque la mayor parte del tiempo se encuentra en el estado low-hard. El proceso físico que da lugar a la formación de jets es todavía un problema abierto, aunque existe cierto consenso sobre el protagonismo del campo magnético que se genera en las cercanías del agujero negro [9]. Del mismo modo, no está del todo entendido el mecanismo que mantiene colimado al jet en distancias tan grandes. Sin embargo, existe cierto acuerdo sobre la necesidad de un medio externo que confine al jets. El estudio de los procesos de formación y colimación de jets ha avanzado significativamente en los últimos años gracias a trabajos numéricos que permiten simular el comportamiento dinámico del jets [10] . Se ha modelado, en particular, la interacción del jet con el medio que lo rodea: el medio circundante es perturbado por el abrupto y energético paso del jets, y las partículas que lo conforman pueden ser aceleradas y calentadas, de modo de emitir radiación en rayos X. Esta radiación puede, entonces, interactuar con los electrones (y tal vez protones) relativistas que conforman al jet, entrelazando así los procesos dinámicos con los radiativos. Así, el estudio completo y general de la emisión de radiación electromagnética de los jets es un área compleja que en los últimos años ha empezado a cobrar más relevancia gracias a las herramientas computacionales disponibles. En el caso de Cygnus X-1 se ha detectado una región "brillante", lejos de la binaria, producto del frenado del jet a causa del material interestelar que lo rodea (Fig. 3) .
     
    El estudio de jets relativistas es investigado por numerosos científicos en distintas partes del mundo. En particular en nuestro instituto, se llevan a cabo tanto estudios numéricos como observacionales. Cygnus X-1 ha sido blanco de varios de dichos trabajos. En los últimos años, con la puesta en marcha de telescopios como FERMI-LAT (Fermi Large Area Telescope) o MAGIC (Major Atmospherica Gamma-ray Imaging Cherenkov telescope; ver este post por una explicación detallada de radiación Cherenkov) hemos obtenido observaciones de esta fuente en muy altas energías por primera vez! Se ha hecho mucho trabajo y queda otro tanto por hacer, pues, después de 51 años Cygnus X-1... sigue dando que hablar!
     

    Fig. 1: Relación entre la temperatura de un cuerpo y la energía que emite
     

    Fig. 2: Representación artística de Cygnus X-1. Puede observarse el jet, el
    disco de acreción y la estrella compañera.

    Fig. 3: Imagen en radio de la nebulosa que rodea a Cygnus X-1. La región brillante en forma de arco es producto de la interacción del jet con el medio circundante. En la parte inferior se muestra la región donde el jet se encuentra colimado.
     
    - Referencias
     
    [1] Bowyer, S. et al., 1965, Science 147, 394
    [2] Oda, M. et al., 1999, ApJ, 166, L1-L7
    [3] Miller, J. M. et al., 2005, ApJ, 620, 398
    [4] Malyshev, D., Zdziarski, A. A., & Chernyakova, M. 2013, MNRAS, 434, 2380
    [5] Stirling, A. M., Spencer, R. E., de la Force, C. J., et al. 2001, MNRAS, 327, 1273
    [6] Migliari, S., Fender, R., & Méndez, M. 2002, Science, 297, 1673
    [7] Díaz Trigo, M., Miller-Jones, J. C. A., Migliari, S., Broderick, J.W., & Tzioumis, T. 2013, Nature, 504, 260
    [8] Vila, G. S., Romero, G. E., & Casco, N. A. 2012, A&A, 538, A97
    [9] Beskin V. S. 2010, Physics Uspekhi, 53, 12, 1199-1233. Disponible en ingles en arXiv:1103.3375.
    [10] Perucho, M.; Bosch-Ramon, V., 2012, A&A, 539, 57
     
    - Sobre la autora
     
    La Dra. Carolina PEPE inició su trabajo de post-doctorado en nuestro Instituto en el tema "Investigación sobre los efectos del impacto de jets ultrarelativistas en el medio interestelar" el año 2014, siendo su director de trabajo el Dr. Gustavo E. Romero
    Su trabajo de tesis de Doctorado lo realizó en la Universidad de Buenos Aires (UBA) sobre el tema "Intermediate-mass black holes: effects on the environment and detectability", la que fue dirigida por el Dr. Leonardo J. Pellizza.
     
    Descargar en Descargar
     
     Actividades de Divulgación científica en el IAR
    El Área de Divulgación del IAR continúa su labor llevando a cabo las tradicionales visitas guiadas por el Instituto. Estas visitas guiadas para establecimientos educacionales consisten en proyección de material audiovisual, charla explicativa y recorrida por sus instalaciones.
     
    Las tareas de extensión son realizadas por estudiantes avanzados de la carrera de Astronomía, y por docentes e investigadores de la Institución.
    Los días de atención son los viernes, en dos turnos:
    • mañana (9:00 hs)
    • tarde (13:00 hs)
    Los turnos se pueden solicitar por teléfono, fax o e-mail a:
    Tel/Fax: (0221) 425-4909 y (0221) 482-4903
     
    Por razones de organización, las visitas guiadas se restringen al periodo comprendido entre principios de abril y principios de diciembre de cada año.

    Para mayor información:

    Visite nuestra página web:  http://www.iar.unlp.edu.ar/divulgacion.htm
      El IAR en los medios
    En esta sección encontrará artículos publicados en diversos medios acerca de las distintos actividades del IAR y su gente.
     
    - Tronador II: cómo se construye el lanzador argentino - El Cordillerano (23-03-2015) Descargar Ir
     
    - Lanzador espacial con impronta platense - Diario Hoy (18-02-2015) Descargar Ir
     
    - Tronador: cómo se construye el lanzador argentino - La Nación (16-02-2015) Descargar Ir
     
    - Con el sello platense, continúa la fabricación del lanzador espacial - Diario Hoy (16-02-2015) Descargar Ir
     
    - Avances en la instalación de un radiotelescopio en la Puna salteña - Radio Salta (10-02-2015) Descargar Ir
     
    - Avanza el proyecto LLAMA - FM 89.9 Salta (10-02-2015) Descargar Ir
     
    - Avances en la instalación de un radiotelescopio en la Puna salteña - Argentina Municipal (10-02-2015) Descargar Ir
     
    - El momento de la ciencia en Argentina - Los Andes (10-02-2015) Descargar Ir
     
    - Proyecto LLAMA, a la cabeza de los proyectos astronómicos de Argentina - Miami Diario (21-01-2015) Descargar Ir
     
    - ¿En qué consiste el proyecto astronómico LLAMA? - El Intransigente (20-01-2015) Descargar Ir
     
     Quienes somos:
    Selección de contenidos y diagramación:
    C.C. Nelva Perón

    Revisión y corrección:
    Lic. Claudia Boeris

    Asesoramiento científico:
    Dr. E. Marcelo Arnal

    Dirección:

    Camino Gral. Belgrano Km 40 (Parque Pereyra Iraola)
    Berazategui - Prov. de Buenos Aires - ARGENTINA

    Dirección Postal:

    Casilla de Correo No. 5
    1894 -Villa Elisa
    Prov. de Buenos Aires - ARGENTINA

    Teléfonos y FAX:

    Tel: (0221) 482-4903
    Tel. nuevos: +54-221-423-5029 +54-221-423-5018 y +54-221-423-4971 (en prueba)
    Tel/Fax: (0221) 425-4909

    Correo electrónico
    difusion@iar.unlp.edu.ar

     Ediciones Anteriores
    Año 1 Nº    1  - Junio de 2003
    Año 1 Nº    2  - Septiembre de 2003
    Año 1 Nº    3  - Diciembre de 2003
    Año 2 Nº    4  - Marzo de 2004
    Año 2 Nº    5  - Junio de 2004
    Año 2 Nº    6  - Setiembre de 2004
    Año 2 Nº    7  - Diciembre de 2004
    Año 3 Nº    8  - Marzo de 2005
    Año 3 Nº    9  - Junio de 2005
    Año 3 Nº  10 - Setiembre de 2005
    Año 3 Nº  11 - Diciembre de 2005
    Año 4 Nº  12  - Marzo de 2006
    Año 4 Nº  13  - Junio de 2006
    Año 4 Nº  14 - Setiembre de 2006
    Año 4 Nº  15 - Diciembre de 2006
    Año 5 Nº  16  - Marzo de 2007
    Año 5 Nº  17  - Junio de 2007
    Año 5 Nº  18 - Setiembre de 2007
    Año 5 Nº  19 - Diciembre de 2007
    Año 6 Nº  20  - Marzo de 2008
    Año 6 Nº  21  - Junio de 2008
    Año 6 Nº  22 - Setiembre de 2008
    Año 6 Nº  23 - Diciembre de 2008
    Año 7 Nº  24  - Marzo de 2009
    Año 7 Nº  25  - Junio de 2009
    Año 7 Nº  26 - Setiembre de 2009
    Año 7 Nº  27 - Diciembre de 2009
    Año 8 Nº  28 - Marzo de 2010
    Año 8 Nº  29 - Junio de 2010
    Año 8 Nº  30 - Setiembre de 2010
    Año 8 Nº  31 - Diciembre de 2010
    Año 9 Nº  32 - Marzo de 2011
    Año 9 Nº  33 - Junio de 2011
    Año 9 Nº  34 - Setiembre de 2011
    Año 9 Nº  35 - Diciembre de 2011
    Año 10 Nº  36 - Marzo de 2012
    Año 10 Nº  37 - Junio de 2012
    Año 10 Nº  38 - Setiembre de 2012
    Año 10 Nº  39 - Diciembre de 2012
    Año 11 Nº  40 - Marzo de 2013
    Año 11 Nº  41 - Junio de 2013
    Año 11 Nº  42 - Setiembre de 2013
    Año 11 Nº  43 - Diciembre de 2013
    Año 12 Nº  44 - Marzo de 2014
    Año 12 Nº  45 - Junio de 2014
    Año 12 Nº  46 - Setiembre de 2014
    Año 12 Nº  47 - Diciembre de 2014
    ©2015 - Instituto Argentino de Radioastronomía