El  Boletín
Sobre el Boletín
Contáctenos
Suscríbase
Quienes somos
Ver Anteriores

 Divulgación
Actividades de divulgación científica
El IAR en los medios

 Enlaces
Observatorio Astronómico de la Plata. Área de extensión
Museo astronómico de la Universidad Nacional de Córdoba
Centro de visitantes del Observatorio de Arecibo (Puerto Rico)
Observatorio de Astrofísica de Canarias. Actividades de difusión
European Southern Observatory. Actividades de Extensión
Space Telescope Science Institute. Actividades de extensión
NRAO. Información para docentes y estudiantes
 

  BOLETIN RADIO@STRONOMICO
 

Boletín de Divulgación
Científica y Tecnológica del IAR
ISSN: 1669-7871

 

Año 10 Número
Marzo 2012


El Boletín Radio@stronómico es una publicación trimestral a través de la cual se difunden las actividades desarrolladas en nuestro Instituto y noticias relacionadas con la astronomía y la radioastronomía en el mundo.
 
Publicaciones
 
Listado de los trabajos publicados por el IAR durante 2011.

 

El Instituto
 
Avances del Proyecto LLAMA
 
Nueva Doctora en Astronomía
 
La primera tesis doctoral sobre Astrofísica presentada en la Universidad de Jaén, España
 
Tapa de la revista "Astrophysics and Space Science"
 
Einstein Archives Online: los archivos de Einstein en la web
 
55ª Reunión Anual de la AAA
 
Viajeros
Divulgación de la Astronomía

Tiempo y filosofía
Si el viaje al futuro o al pasado es posible, es porque, en algún sentido, el pasado y el futuro existen...
 
Descubrimiento de la radiación no térmica
El espectro electromagnético: un fantasma que se dejó ver.
 
Otros
Papá
Cuento corto
 
 
 Boletín Radio@stronómico
El Boletín Radio@stronómico es una publicación trimestral, donde se incluyen noticias relacionadas con la Astronomía y más específicamente la Radioastronomía. Es un vehículo de comunicación que nos permite dar a conocer las novedades y actividades desarrolladas en el Instituto.

A partir del número 11 el Boletín cuenta con su número de ISSN. El International Standard Serial Number (ISSN) es un número internacional normalizado que se asigna a las publicaciones periódicas, o sea a todas aquellas publicaciones que aparecen a intervalos regulares o irregulares de tiempo, y a las que comunmente se las conoce como revistas. Este número identifica a la publicación en forma única y se tramita a través del Centro Argentino de Información Científica y Tecnológica (Caicyt).

Es importante para nosotros seguir trabajando para hacerles llegar nuestro Boletín. Desde ya estamos agradecidos y los instamos a comunicarse con nosotros para plantearnos cualquier consulta o sugerencia.
  Avances del Proyecto LLAMA
Entre el 17 y el 22 de marzo los doctores E. Marcelo Arnal y Ricardo Morras viajaron a la ciudad de Salta para realizar actividades relacionadas con el Proyecto LLAMA (acrónimo de Large Latin American Millimeter Array).
 
Se llevó a cabo una reunión con profesionales encargados de llevar a cabo los estudios de pre-factibilidad de construcción de caminos de acceso al sitio donde se instalará el radiotelescopio, organizada por el Dr. José Viramonte, Director de la UVT CAPACIT-AR. Se trató el tema de la provisión de energía al sitio, la conectividad del sitio con el mundo y estudios geológicos del suelo de Alto Chorrillos.
 
Se reunieron también con el Ing. Elio Gonzo y el Dr. Miguel Condorí, director y y vicedirector respectivamente del CCT Salta con la finalidad de informarles sobre el proyecto LLAMA y la importancia que la formación de RRHH locales podría tener para este proyecto. Se enfatizó la importancia que tendría para el proyecto LLAMA tener dentro del CCT - o de la Universidad de Salta - un espacio físico asignado para laboratorios, y dependencias administrativas.
 
Hubo una reunión también con el Ministro de Educación, Ciencia y Tecnología de Salta, Dr. Roberto Dib Ashur, y con la Secretaria de Ciencia y & Tecnología de Salta, Dra. Maria Soledad Vicente, cuya finalidad fue informar de primera mano a las autoridades sobre el proyecto LLAMA; solicitar información sobre el estado de la solicitud de sesión de 150 hectáreas de tierras fiscales para el proyecto, en calidad de comodato, en la zona donde se instalará el telescopio; y por último informar al Sr. Ministro sobre la importancia para LLAMA y otras inversiones de instrumentación científica, de la disponibilidad en la zona de fuentes de energía confiables.
 
Se conversó en torno de la construcción de una sub-estación eléctrica o de un "hot-up" de un gasoducto cercano de alta presión, para generar la disponibilidad para la zona de unos 20 MW.
 
Se llevó a cabo también una reunión con el Sr. Rolando Miranda, representante del Intendente de San Antonio de los Cobres, a quien se le informó sobre el proyecto LLAMA y la importancia que podría tener para la región. También se indicó la necesidad de que sea asignado al proyecto un predio de 100m x 100m a los fines de construir las facilidades de infraestructura necesarias. A esta reunión también concurrieron Sr. Carlos PorceloDirector de Promoción Científico Tecnológico de Ciencia y Tecnología - Gobierno de la Provincia de Salta, y la Arq. Carolina Martínez, Directora General de Ciencia y Tecnología - Gobierno de la provincia de Salta.
 
Por último se llevó a cabo una charla en el Aula Virtual de la Facultad de Ciencias Exactas de la Universidad de Salta sobre "Proyecto LLAMA". La charla fue orientada a poner a la comunidad académico-tecnológica de la UNSA en conocimiento del proyecto y de su importancia para la región, y para afianzar e incrementar los vínculos académicos entre la UNSA y otras Universidades Nacionales y Centros de Investigación con mayor tradición en la investigación astronómica. La audiencia rondó los 80 asistentes.
  Nueva Doctora en Astronomía
El 28 de marzo se doctoró en la Universidad de Buenos Aires la Lic. Gabriela Vila al defender exitosamente su Tesis Doctoral "Radiative processes in jets of X-ray binaries".
 
La calificación de la misma fue "Sobresaliente con mención especial del Jurado". La flamate doctora inició su trabajo de tesis doctoral en el año 2007 bajo la dirección del Dr. Gustavo E. Romero mediante una beca del CONICET y es miembro del Grupo de Astrofísica Relativista y Radioastronomía (GARRA).
 
  La primera tesis doctoral sobre Astrofísica presentada en la Universidad de Jaén, España
Ampliar
Juan Ramón Sánchez Sutil, del Departamento de Física, presentó el 22 de febrero su tesis doctoral, la primera que se lee en la Universidad de Jaén, España, sobre Astrofísica de altas energías.
 
La defensa de la tesis doctoral tuvo lugar en el Salón de Grados del edificio A 3 y llevaba por título "A radio study of relativistic jet sources in the galaxy".
 
La misma fue dirigida por el profesor de la Escuela Politécnica Superior de Jaén de la Universidad de Jaén, Josep Martí Ribas, y el Dr. Jorge A. Combi, profesor de la Facultad de Ciencias Astronómicas y Geofísicas (FCAGLP) e investigador de nuestro Instituto.
 
El Dr. Josep Martí aseguró que para su grupo de investigación, esta tesis de Astrofísica "es un hito del que estamos muy orgullosos, por ser la primera de esta temática que se defiende en nuestra universidad". Ello significa -señala Martí- que se consolida "nuestra línea de investigación en Astrofísica de altas energías, mediante la formación de nuevos investigadores en esta materia".
 
  Tapa de la revista "Astrophysics and Space Science"
Ampliar
Tapa de la revista
La revista "Astrophysics and Space Science" ha elegido para su portada del Vol. 337 del mes de Febrero de 2012 el trabajo liderado por los miembros del grupo "Fuentes de altas energías de la galaxia" (FAEG) de la Universidad de Jaén (UJA), Jorge Ariel Combi y Estrella Sánchez Ayaso, ésta última dentro de su trabajo de tesis doctoral como becaria FPI del área de Astronomía y Astrofísica de la UJA, dirigida por el profesor de la UJA Josep Martí quien también participa en los trabajos.
 
Jorge Ariel Combi, investigador del Instituto Argentino de Radioastronomía (IAR) explica que este trabajo se hizo "gracias al avance significativo del instrumental que existe operando en el espacio, que ha permitido obtener mucha mejor resolución en los que respecta a morfología espacial y espectral". Ampliar
Jorge Ariel Combi y Estrella Sánchez Ayaso
 
En concreto, se refiere a la evolución de las capacidades observacionales de los telescopios de rayos-X de última generación, a bordo de los satélites XMM-Newton (http://xmm.esac.esa.int/) y Chandra (http://cxc.harvard.edu/), que han permitido llevar a cabo un importante progreso en la detección de remanentes de supernovas (RSNs). Este tipo de instrumentos son precisamente los que han hecho posible el descubrimiento de la emisión de rayos-X de varios de estos objetos celestes por parte del equipo investigador. Además de sus estudios científicos publicados en revistas internacionales como Astronomy and Astrophysics, la belleza de las imágenes obtenidas las asemeja a auténticas postales del universo de altas energías.
 
Más información: Actualidad Universitaria
  Einstein Archives Online: los archivos de Einstein en la web
Albert Einstein - 1947
(Foto Biografías y Vidas)
Mediante una iniciativa conjunta del California Institute of Technology y de la Hebrew University of Jerusalem los manuscritos científicos y no científicos de Albert Einstein están ahora disponibles para su consulta en la Web.
El sitio cuenta con aproximadamente 3.000 imágenes de alta definición que representan alrededor de 900 escritos del científico. Se calcula que para fines de 2012 cuando finalice el proyecto, el sitio contará con 7.000 imágenes.
Se pueden encontrar escritos científicos, correspondencia y diarios de viaje, algunos de los cuales están acompañados de transcripciones anotadas y traducciones, disponibles en formato PDF.
 
Einstein Archives Online: http://alberteinstein.info/index.html
  55ª Reunión Anual de la AAA
Entre el 17 y el 21 de setiembre se llevará a cabo en la ciudad de Mar del Plata la 55ª Reunión Anual de la Asociación Argentina de Astronomía. La misma será organizada por el IAR.
 
La Reunión está dirigida a astrónomos y físicos que trabajen en la investigación astronómica y a los estudiantes de ambas carreras, como así también a quienes se dedican a difundir la astronomía.
 
Para mayor información visite la página de la reunión: http://www.iar.unlp.edu.ar/aaa2012
  Viajeros
  • La Dra. Paula Benaglia realizó una estadía de trabajo en el Australia Telescope National Facility (ATNF, perteneciente a CSIRO, Sidney, Australia), en calidad de Distinguished Visitor y una estadía en el Australia Telescope Compact Array (ATCA, Narrabri, Australia) para realizar campaña de observación con el ATCA.
    Durante la estadía dio un coloquio titulado: "Runaway massive stars and their bow shocks", el 29 de febrero.
     
  • El Dr. César F. Caiafa asistió a la Conferencia "IEEE International Conference on Acoustic, Speech and Signal Processing - ICASSP 2012" que se realizó en la ciudad de Kyoto, Japón, donde presentó el trabajo "Block sparse representations of tensors using kronecker bases" realizado en colaboración con el Dr. Andrzej Cichocki, del Laboratory for Advanced Brain Signal Processing (LABSP, RIKEN, Japón).
     
  • El Lic. Federico García estuvo trabajando en la Universidad de Groningen, Holanda, con una beca de COSPAR (Committee on Space Research), durante el mes de febrero.
     
  • Los Dres. Ricardo Morras y Marcelo Arnal realizaron un viaje a la ciudad de Salta entre los días 17 y 22 de marzo para realizar actividades relacionadas con el proyecto LLAMA.
     
  • Por el Dr. Gustavo E. Romero
    Si el viaje al futuro o al pasado es posible, es porque, en algún sentido, el pasado y el futuro existen. De no ser así no habría dónde viajar. Esto, sin dudas, tiene implicaciones filosóficas profundas. ¿Dónde está el niño que fui a los 6 años? ¿Cómo puedo afirmar que ese niño es la misma persona que quien escribe estas líneas, si casi todas sus propiedades son diferentes? Las respuestas a estas preguntas y otras similares están en el concepto mismo de espacio-tiempo, que matemáticamente se representa por medio de una variedad diferenciable 4-dimensional, esto es, un conjunto de puntos que pueden representarse por medio de 4 números reales y sobre los cuales puede establecerse como cambian los valores de cualquier función sobre variaciones muy pequeñas, 'infinitesimales', de los valores de las variables numéricas. Los puntos de la variedad representan los eventos o sucesos que ocurren a las cosas que forman el universo. La teoría general de la relatividad postula una variedad única para el espacio-tiempo. Esto significa que los eventos se consideran dados. A esto se le suele llamar determinismo ontológico, que no debe confundirse con el determinismo epistemológico, o capacidad de predecir de una teoría. Si los eventos son fijos, la respuesta a la pregunta "dónde está el autor de este libro a los 6 años de edad" es simplemente "está en la ciudad de La Plata, Argentina, en el año 1970". Cada evento o sucesión de eventos está fija en el espacio-tiempo. Decir que alguien ha nacido, vivido y muerto, es simplemente decir que su existencia está confinada entre tal y tal fecha y en tal región espacial. (Ver Fig. 1)
     
    Ampliar Fig. 1: Diagrama del espacio-tiempo. Los cortes transversales son secciones de espacio, y la dimensión temporal esta indiaca por las líneas o trayectorias de las galaxias. Este modelo particular de espacio-tiempo se llama "orientable en el tiempo" ya que no contiene curvas temporales cerradas.
     
    Dadas las consideraciones anteriores, la pregunta sobre la identidad personal se puede responder en forma sencilla. Todo ser u objeto existente es una entidad de cuatro dimensiones extendida en el espacio-tiempo. De esa forma, el niño que fui es una parte temporal de un objeto más extenso, que soy yo. El niño es diferente de quien escribe hoy, pero aún así se trata de misma persona, porque ambos son sólo partes de algo más vasto, en forma análoga a cómo mi mano es diferente de mi cabeza, pero ambas son partes del mismo ser.
     
    Existir, entonces, es ocupar una región del espacio-tiempo. Nacimiento o muerte, no son otra cosa que límites de esa región. A esto se refería Einstein cuando en 1955 escribió a la familia de su antiguo amigo Michele Besso, poco antes de su propia muerte: "El se ha adelantado ahora un poco a mí en decir adiós a este extraño mundo. Esto no significa nada. Nosotros, devotos físicos, sabemos que la distinción entre el pasado, el presente y el futuro no es más que una ilusión. Aunque una muy tenaz". Y a lo mismo se refería el gran Hermann Weyl cuando escribió: "El mundo objetivo simplemente es, no transcurre. Sólo a través de mi conciencia, arrastrándose a lo largo de la línea de mi vida, una sección de este mundo cobra vida como una imagen fugaz en el espacio, que cambia continuamente en el tiempo". (Ver Fig. 2)
     
    El universo, como entidad de 4 dimensiones, no cambia. Sólo cambia relativamente si comparamos sus partes. Lo que llamamos "cambio" es la propiedad de los elementos del universo de no permanecer idénticos a lo largo de una dirección del mismo. Esta es la visión que san Agustín pensaba tiene Dios de la creación. Dios no contempla el universo en forma sucesiva, sino sub specie aeternitatis, "desde el punto de vista de la eternidad". Así como un hombre puede ver una caravana en su conjunto desde una colina, mientras que alguien en el camino ve sólo la sucesión de personas y animales, así Dios, según san Agustín, percibe el tiempo: en su totalidad. (Ver Fig. 3)
     
    Ampliar Ampliar
    Fig. 2: Hermann Weyl. Fig. 3: San Agustín, según una pintura del siglo XV
     
    La idea de que el presente es algo en lo que habitamos y avanza hacia un futuro que no existe parece tener, sin embargo, una enorme fuerza en nuestra imaginación. ¿Qué es, pues, el presente? No se trata ciertamente de algo que esté en las ecuaciones que representan las leyes de la física. Estas describen los procesos que sufren las cosas, pero ningún evento descripto por las leyes que parecen regir el universo tiene la propiedad de ser 'presente'. Las únicas relaciones objetivas entre los eventos son las de 'anterior a', 'posterior a' y 'simultáneo con'. Así, es una propiedad de la caída de Constantinopla el de ser posterior a la caída de Roma. Pero no hay nada que diga que alguno de esos eventos es 'presente'. Eso sólo se puede decir respecto a algún estado mental. Por ejemplo, puedo decir que la escritura de esta línea es 'presente' para el estado mental que yo tenía el 25 de octubre de 2011 a las 18:25 a.m. El presente, pues, parece sólo poder definirse respecto a cierto estado de conciencia. No es una propiedad de las cosas, ni una cosa, sino una relación entre ciertos cambios (eventos) en cosas y un estado de conciencia que los registra. El presente una propiedad secundaria, emergente, como lo son un color, un aroma, o una pena. Si no hubiese seres conscientes en el universo, no habría colores, olores o dolor. Esas propiedades surgen de la interacción de un organismo dotado de conciencia con un mundo donde hay eventos externos a esa conciencia.
     
    La idea de que el universo, en cierta forma esta 'dado', es fijo, plantea serios problemas a la teología. Un universo fijo parecería poner límites a la omnipotencia de Dios. El teólogo italiano del siglo XI Pietro Damian expuso en su libro De Omnipotentia Dei que el pasado no puede ser un obstáculo a la divina omnipotencia, y que si Dios quisiese podría cambiarlo. Santo Tomás de Aquino, en cambio, sostuvo que la omnipotencia implica que Dios puede hacer todo lo que no va en contra de su naturaleza y que no es contradictorio. Cambiar el pasado implica una contradicción, similar a cambiar un triángulo para que tenga cuatro lados: es algo que simplemente no puede ser realizado porque es absurdo. Un triángulo tiene 3 lados por definición; si demandamos que tenga 4 lados, ya no será un triángulo. De la misma forma, si el pasado se cambiase, ya no sería nuestro pasado.
     
    Un problema más grave para la teología es, no la existencia del pasado, sino del futuro. La teoría especial de la relatividad implica que el futuro existe, en el sentido de que está determinado y es inmodificable. Si esto es así, entonces aparecen problemas relativos al libre albedrío, o la supuesta capacidad de los seres humanos de actuar libremente. También aparecen problemas, una vez más, con la omnipotencia divina.
     
    El problema del libre albedrío puede ilustrarse con un ejemplo. Supongamos la inverosímil y ridícula situación en la cual un colega de quien escribe, llamémosle el Dr. F., se convence de que las investigaciones que el autor realiza nada tienen que ver con la astronomía, la astrofísica o ciencias afines, y decide detenerlas. Habiendo fracasado en sus intentos, el Dr. F., presa de la desesperación, y acaso de la locura, se propone matar al autor, ejecutando su pérfido acto el 1 de enero del año 2013 (futuro respecto al momento en que escribo). El Dr. F. no logra escapar de la justicia, y en su ulterior juicio, utilizando conceptos extraídos de este artículo, manifiesta que es inocente ya que todos los eventos del universo están fijos en el espacio-tiempo y por tanto no es físicamente posible que él no asesinara al autor de estas líneas. Luego, si no asesinarme es algo imposible, no debería haber castigo para él, el homicida confeso. ¿Qué debería determinar el juez? Si le da la razón al Dr. F. sentaría, casi seguramente, un antecedente para que luego sean liberados criminales de toda clase, algunos, acaso, peores que el propio Dr. F. Si lo condena, por otro lado, parecería que el Dr. F. tiene alguna propiedad fuera del espacio-tiempo que no obedece a las leyes de la física; en otras palabras, el Dr. F. tendría libre arbitrio y sería plenamente responsable de sus actos.
     
    ¿Qué es, pues, este libre albedrío? ¿Es compatible con la determinación del universo? Supongamos por un momento, que el libre albedrío, como algunas personas piensan, es una facultad humana no sujeta a leyes deterministas. Entonces, el propio individuo no podría determinar su comportamiento. Si alguien repentinamente empezase a saltar, hablar en forma inconexa, agitar los miembros, etc., difícilmente pensaríamos que la persona está haciendo uso de su libre albedrío. Más bien, llamaríamos a un médico porque pensaríamos que ha perdido el control de sus actos. De hecho, pensamos que alguien actúa en forma responsable cuando lo hace en concordancia con su historia previa. Si alguien es un padre modelo por 10 años, consideramos razonable que lo siga siendo en el futuro cercano. Si en un acto repentino asesinase a sus hijos, pensaríamos que enloqueció y no está haciendo uso de su libre albedrío, o si actúa libremente, que nunca le conocimos verdaderamente. El libre albedrío, lejos de ser incompatible con las leyes de la naturaleza, parece presuponerlas. De otra forma, sería imposible para nosotros controlar nuestra conducta y ser responsables de nuestros actos. El libre albedrío, pues, parece ser la capacidad de un sistema biológico de comportarse determinado por sus condiciones internas e iniciales y no por las externas o de contorno. El libre albedrío es una medida de la influencia de los factores circunstanciales en el comportamiento de los sistemas biológicos: a mayor influencia, menor libre albedrío. (Ver Fig. 4)
     
    Ampliar Fig. 4: "El libre albedrío está sobrevalorado."
     
    La determinación del futuro, por otro lado, en el marco de la teología, parece ser requerida por la omnisciencia divina. Si Dios es omnisciente, entonces para todo enunciado E, Dios sabe si E es verdadero o falso. Eso incluye a los enunciados acerca del futuro. Por ejemplo, dado el enunciado "mañana lloverá" Dios sabe si es verdadero o falso en cualquier circunstancia que se pronuncie. Si Dios sabe, por ejemplo, que es verdadero, es imposible que mañana no llueva. Esto genera un conflicto con la omnipotencia, otro notorio atributo divino. Si Dios sabe que mañana lloverá, entonces no puede evitar que así sea. De evitarlo, anularía su omnisciencia. Si no puede evitarlo, entonces no es omnipotente. El problema puede generalizarse al punto que como el conocimiento de Dios es completo, se sigue que su impotencia (incapacidad de actuar) también es completa.
    Eso vuelve superfluas, por ejemplo, las plegarias - no hay forma de Dios cambie lo que sabe sucederá. Una posible solución a este problema es que Dios cree el universo en bloque, sub specie aeternitatis, tomando todas las decisiones a priori, o mejor aún, fuera del espacio-tiempo. Todas sus acciones en realidad son una sola: el acto de creación. Claro que el problema entonces es dar un claro significado al concepto de existencia fuera del espacio-tiempo.
     
    Un tema relacionado es el de la benevolencia divina. ¿En qué sentido Dios es benévolo si no puede actuar sobre la creación? Se ha sugerido que Dios no puede crear un universo sin mal, ya que debe crear, de todos los universos posibles, aquel que sea más perfecto, y la presencia del mal es necesaria para la manifestación del bien. Mal y bien, sin embargo, parecen ser conceptos relacionados con escalas de valoración, y es difícil entender en qué sentido podrían ser propiedades intrínsecas de las cosas o más bien de las acciones. Si se opta por la solución de que es Dios quien legisla en forma absoluta qué es bueno o malo, surge el problema de que Dios mismo, entonces, no es moralmente calificable, ya que es él mismo el patrón de la escala de valores.
     
    La visión del propio Einstein en estos temas es quizá la que mejor sintetiza la relación entre la religión y un universo determinado: "El misterio es lo más hermoso que nos es dado sentir. Es la sensación fundamental, la cuna del arte y de la ciencia verdadera. Quien no lo conoce, quien no puede asombrarse y maravillarse, está muerto. Sus ojos se han extinguido. Esta experiencia de lo misterioso -aunque mezclada de temor- ha generado también la religión. Pero la verdadera religiosidad es saber de esa existencia impenetrable para nosotros, saber que hay manifestaciones de la razón más profunda y de la belleza más resplandeciente sólo asequibles en su forma más elemental para el intelecto. En ese sentido, y sólo en éste, pertenezco a los hombres profundamente religiosos. Un Dios que recompense y castigue a seres creados por él mismo que, en otras palabras, tenga una voluntad semejante a la nuestra, me resulta imposible de imaginar. Tampoco quiero ni puedo pensar que el individuo sobreviva a su muerte corporal, que las almas débiles alimentan esos pensamientos por miedo, o por un ridículo egoísmo. A mí me basta con el misterio de la eternidad de la Vida, con el presentimiento y la conciencia de la construcción prodigiosa de lo existente, con la honesta aspiración de comprender hasta la mínima parte de razón que podamos discernir en la obra de la naturaleza." 1 Para Einstein, como para Espinosa, si la palabra 'Dios' se aplica a algo, ese algo es el propio universo "Dios es inmutable o, lo que es lo mismo, sus atributos son inmutables"2. (Ver Fig. 5)
     
    Ampliar      Ampliar
    Fig. 5: Albert Einstein hacia 1950 Fig. 6
     
    Los filósofos también han mostrado perplejidad ante la aparente contradicción de que el sentido común parece sugerir que el tiempo "fluye" y la imagen de un espacio-tiempo fijo que se impone a partir de la teoría general de la relatividad. La imagen del tiempo como fluido es meramente metafórica y tiene su origen en la observación de procesos, sucesiones de cambios o eventos, que son irreversibles. Esto es, dados dos eventos e1 y e2 ordenados por la relación e1 'es anterior a' e2, y otros eventos similares que ocurren en el mismo orden, nunca se observan en el orden inverso. Esto se expresa a través de la llamada segunda ley de la termodinámica, que afirma que la entropía de un sistema aislado tiende siempre a aumentar. La entropía es una medida del grado de desorden de un sistema. Así, por ejemplo, podemos observar que una vaso de cristal se rompa, pero nunca que fragmentos de cristal se junten para formar un vaso; o que un recipiente con agua caliente sobre una superficie fría adquiera una temperatura similar a la de la superficie, pero nunca que la superficie emita calor y caliente el recipiente quedando ella más fría que al comienzo. La irreversibilidad de los fenómenos está muy probablemente relacionada con las condiciones iniciales de la fase de expansión del universo y con relaciones entre la estructura global del cosmos y los procesos que ocurren localmente. Se trata de un problema complejo que va más allá del alcance del presente artículo. Baste aquí mencionar, sin embargo, que no hay nada incompatible entre la idea de un universo determinado y la presencia de procesos irreversibles. La irreversibilidad no implica un flujo del tiempo. El tiempo no tiene dirección, ya que se describe con números reales, no con vectores. Lo que tiene una asimetría es la dirección según la cual ocurren los procesos irreversibles dentro de la variedad del espacio-tiempo.
     
    Tiempo y cambio están íntimamente relacionados, como sostenía Leibnitz. El tiempo es una propiedad emergente de un sistema de cosas cambiantes. Decir que las cosas cambian significa que sus propiedades no son las mismas en distintos puntos del espacio-tiempo, esto es, del sistema de todos los eventos. Nuestra propia vida, una sucesión de eventos, es una trayectoria, un camino, en el espacio-tiempo. Ese camino puede ser intrincado. Ese laberinto, acaso, puede llegar a ser tan enmarañado que se toque a sí mismo3. Si así fuese, el anciano de mañana tal vez podría mirar a los ojos al niño de ayer. Acaso, entonces, ese viejecito que una vez se me acerco y sin razón me miro y lloró hace 40 años, no sea otro que yo mismo, dentro de 20 años.
     
    León Bloy escribió que ningún hombre conoce su verdadero rostro, nadie sabe quién es realmente, o qué hace en este mundo. Ningún hombre conoce, sin duda, el "laberinto múltiple" que sus "pasos tejieron desde un día perdido" de la niñez. Quién sabe si ese dibujo inimaginable en el espacio-tiempo, en algún caso, no tiene la forma perfecta de un círculo.
     
  • Sobre el autor:
     
    Gustavo E. Romero es Doctor en Física por la Universidad Nacional de La Plata. Actualmente es Profesor Titular de Astrofísica Relativista en la Facultad de Ciencias Astronómicas y Geofísi-cas de la UNLP e Investigador Principal del CONICET, con lugar de trabajo en el Instituto Ar-gentino de Radioastronomía. Dirige el Grupo de Astrofísica Relativista y Radioastronomía (GARRA), ha sido Profesor Visitante de las universidades de Barcelona, Paris VII, Campinas y Hong Kong, entre otras, e Investigador Visitante del Max-Planck-Institut für Kernphysik (Hei-delberg), el Service d'Astrophysique (Saclay, Francia), el Instituto di Astrofísica Spaziale e Física Cósmica (IASF, Bologna, Italia), etc. Ha recibido los máximos premios a la investigación científica en Argentina: El Premio Bernardo Houssay del MCyT (único argentino en recibirlo en dos oportunidades), el Premio J.L. Sérsic de la Asociación Argentina de Astronomía y el Premio E. Gaviola de la Academia Nacional de Ciencias. Fue Presidente de la Asociación Argentina de Astronomía. También ha recibido varias distinciones internacionales, incluyendo dos menciones de honor de la Gravity Research Foundation. El Dr. Romero ha publicado más de 270 artículos sobre gravitación, astrofísica, filosofía y religión. Entre sus libros se destaca "¿Es Posible Viajar en el Tiempo?" (Ed. Kaicron, BsAs, 2010) e "Introducción a la Astrofísica Relativista" (Publica-ciones de la Universidad de Barcelona, 2011). Actualmente es Sub-director de nuestro Instituto.
     
    Descargar Descargar

    1 Albert Einstein, Mi visión del mundo (fragmentos),Tusquets Editores, Barcelona, 2006.
    2 Baruch de Espinosa, Ética, Ediciones Orbis, S.A. ,Barcelona, 1984 (Proposición XX, Corolario 2).
    3 Ver Gustavo E. Romero, ¿Es posible viajar en el tiempo?, Ediciones Kaicron, Buenos Aires, 2010, y el artículo publicado en esta misma serie: Gustavo E. Romero, Boletín Radio@astrómico, 21, 2008.
  •  Descubrimiento de la radiación no térmica.
    Por la Lic. Cintia Peri
    El espectro electromagnético: un fantasma que se dejó ver
     
    El ser humano comenzó a explorar los astros que veía brillar en el cielo mucho antes de definir claramente en forma teórica lo que la luz es. En el siglo XIX, gracias a James C. Maxwell y su desarrollo de la teoría de la electrodinámica, se pudieron vincular fenómenos físicos que hasta ese momento se consideraban independientes: la electricidad, el magnetismo y los fenómenos luminosos. Se comprendió entonces que la luz es una onda electromagnética que se propaga en el vacío con una velocidad de aproximadamente 300.000 km/s.
     
    Figura 1: James C. Maxwell (1831-1879) desarrolló la teoría de la electrodinámica y dejó como legado uno de los más importantes descubrimientos de la física: la luz es una onda electromagnética.
     
    Además de poder ser interpretada como una onda, la luz posee la particularidad de ser identificada de una manera adicional: se la puede estudiar también como un conjunto de partículas llamadas fotones (individualmente, fotón). Tanto en el caso de ser interpretada como onda o en el caso de ser tenida en cuenta como fotones, se caracteriza a la luz por una longitud de onda determinada o equivalentemente frecuencia o energía.
     
    Figura 2: Onda caracterizada por su longitud de onda.
     
    La relación entre la energía y frecuencia de los fotones fue presentada por primera vez por Max Planck. Este físico alemán fue quien planteó que los fotones (o también llamados cuantos) de radiación poseen una energía E que está caracterizada por tomar ciertos valores específicos. Con esta idea, introdujo la constante de Planck h. Los fotones pueden tener solamente valores de energía E múltiplos de esta constante h.
    Este planteo y otros importantes avances de la física constituyeron el desarrollo, durante el siglo XX, de lo que se conoce como Mecánica Cuántica.
     
    Figura 3: Max Planck (1858-1947) ganó el premio Nobel en 1918 (oficialmente entregado en 1919) en reconocimiento a los avances realizados en Física gracias al descubrimiento de la cuantización de la energía de los fotones.
    Crédito: http://freethoughtalmanac.com/?p=2011
     
    El descubrimiento realizado por M. Planck es que la energía de los fotones es directamente proporcional a la frecuencia e inversamente proporcional a la longitud de onda. Las siguientes expresiones representan las relaciones entre energía, frecuencia y longitud de onda de los fotones, es decir, de la luz o radiación electromangnética.
     
    Figura 4: Expresiones Energía, Frecuencia, Long. de onda.
     
    Con los avances en el estudio de la luz y el desarrollo de la física sobre el tema, se pudo comprender y estudiar de manera completa lo que se conoce como espectro electromagnético. El espectro abarca todos los valores posibles de energía que la radiación electromagnética o luz puede tener. En la Figura 5 se puede observar que las longitudes de onda que abarca el espectro electromagnético se comparan con objetos conocidos. Además se muestra que en ciertos casos la radiación proveniente del espacio no atraviesa la atmósfera. Se puede ver que el intervalo de luz que el ser humano puede ver es en verdad una porción muy pequeña del total.
     
    Figura 5: Gráfico del espectro electromagnético. Se muestra si la radiación penetra o no la atmósfera; las longitudes de onda, frecuencias y temperaturas, y los tamaños de objetos conocidos relacionados a escala con la longitud de onda de cada rango.
    Crédito: http://es.wikipedia.org/wiki/Espectro_electromagnético
     
    Algunos ejemplos cotidianos de cuerpos que emiten radiación electromagnética son: los microondas, las antenas de televisión satelital (ondas de radio), las antenas proveedoras de telefonía celular (ondas de radio), emisores de rayos X que sirven para tomar radiografías, e incluso los humanos al igual que muchos animales emitimos ondas de bajas energías dada la temperatura que poseemos.
     
    Figura 6: En la parte superior se muestra el Sol en diferentes longitudes de onda, desde la parte menos energética del espectro electromagnético (izquierda) hasta la más energética (derecha). En la parte inferior se puede apreciar lo mismo pero para el caso de una mano sosteniendo un teléfono celular. En ambos casos se pone en evidencia el hecho de que según en qué longitud de onda se observe un objeto mostrará diferentes imágenes.
    Crédito: http://www.flickr.com/photos/ideum/4052592541/
     
    Ahora bien, ¿cómo se genera la luz, es decir, la radiación electromagnética, en la naturaleza? O equivalentemente, ¿cómo se genera un fotón, o muchos fotones? Existen una gran cantidad de procesos físicos que producen fotones de diferentes energías. Estos procesos se dan en muchos objetos tanto en el cielo como en la Tierra.
    Los astrónomos y físicos estudian, entre otras cosas, la radiación que llega de diferentes sistemas astrofísicos del Universo. A través de estos estudios se deduce cuál es el tipo de objeto (o fuente) que origina la radiación y los procesos que la generan. La astronomía y la física están fuertemente vinculadas. De hecho, muchas teorías físicas fueron corroboradas gracias a observaciones astronómicas, ya que algunas condiciones que no se pueden reproducir en un laboratorio en la Tierra sí se dan más allá de la atmósfera.
     
    ¿Se observaba sin telescopios?
     
    Las observaciones astronómicas se realizan desde hace miles de años. Antiguamente, se confeccionaban registros a simple vista sin utilizar ningún tipo de detector más que el ojo humano. Ésto limitaba las observaciones al rango visual al no existir ningún otro tipo de detector en otras longitudes de onda.
     
    Figura 7: Una persona observando el cielo.
    Crédito: Google images.
     
    Existieron una serie de instrumentos que permitieron observar el cielo con más precisión, pero el mayor avance se dió en el siglo XVII con la creación del telescopio óptico. Si bien existían instrumentos similares al telescopio que se utilizaban con otras finalidades, Galileo Galilei fue quien adaptó la idea con el objetivo de poder ser aprovechado por la astronomía. Este deslumbrante científico, condenado por la Iglesia, realizó una gran cantidad de observaciones de objetos del Sistema Solar y obtuvo resultados asombrosos dada la época.
     
    Figura 8: Dibujo de Galileo Galilei (1564-1642), revolucionó la astronomía observacional gracias a ser el pionero pionero en la utilización del telescopio.
    Crédito: http://www.likeacheese.com.ar/eppur-si-muove
     
    La función más básica y elemental de un telescopio es la de aumentar los objetos celestes y de esa manera aparentan estar más cerca de lo que en realidad se encuentran. El telescopio colecta los fotones que los objetos luminosos emiten y luego estos fotones pasan por un tubo que contiene un juego de lentes. Las lentes forman la imagen aumentada en un punto que se conoce como foco. Otra manera de construir telescopios en el rango óptico es utilizando espejos. Los telescopios que utilizan espejos para recojer la radiación emitida por objeto celestes funcionan de forma similar a los telescopios que utilizan lentes.
    Con estos instrumentos se pudieron ver fuentes de radiación hasta ese momento desconocidas. A medida que transcurrió el tiempo, se crearon técnicas que permitieron registrar las observaciones; por ejemplo, la astronomía fotográfica. Se tomaban imágenes en placas fotográficas que se podían archivar y luego estudiar las veces que fuese necesario, y de manera objetiva. En la actualidad, el registro de datos se realiza en forma digital y se archiva directamente en computadoras.
    Si bien la invención del telescopio óptico sofisticó de manera considerable las observaciones y sucesivos estudios, el relevamiento de información seguía realizándose en el rango visual, con un pequeño rango en infrarrojo y ultravioleta. La investigación de la astrofísica en el rango óptico del espectro electromagnético fue hasta el siglo XIX la más estudiada y conocida. Existían una gran cantidad de trabajos que reunían vasta información sobre diferentes sistemas astrofísicos y modelos físicos asociados a su estructura, origen, evolución y radiación. No se contaba con datos astronómicos de radiación en otras longitudes de onda del espectro electromagnético, bien porque la luz no atravesaba la atmósfera, o bien porque no existían instrumentos que captaran ondas en otros rangos de energía diferentes al visual.
    Durante el siglo XX la astronomía comenzó a abrirse paso a través de todo el espectro electromagnético, sobre todo luego de la Segunda Guerra Mundial. El avance de la astronomía y de muchas áreas de la ciencia va de la mano con el avance tecnológico. Actualmente se realizan observaciones en casi todas las longitudes de onda y cada rango de energía en el cual se observa presenta diferentes desafíos, tanto teóricos como prácticos, que deben ser profundamente estudiados para poder obtener la mejor y mayor cantidad de información posible.
     
    La radiación térmica, ¿quema?
     
    Describiremos lo que se conoce como radiación de cuerpo negro, o radiación térmica.
    Un sistema de partículas, por ejemplo átomos que componen un gas, se encuentra en equilibrio termodinámico si todas sus partículas están aproximadamente a la misma temperatura. Si un sistema se encuantra en ese estado, se lo puede identificar con una temperatura característica y además genera (o emite) un tipo de radiación conocida como la de "cuerpo negro". Este cuerpo negro emite fotones que pueden tener diferentes velores de energía y, para cada valor de energía, existe una cantidad diferente de fotones correspondientes. La emisión (o radiación) de cuerpo negro puede ser representada en forma gráfica con una función que depende de la frecuencia, para una temperatura fija. A continuación podemos ver una figura donde se grafica la curva para diferentes temperaturas. La curva se suele conocer como "planckeana" gracias a su descubridor M. Planck.
     
    Figura 9: Gráfico de distintas curvas que representan la radiación de cuerpo negro, para sistemas en equilibrio termodinámico a diferentes temperaturas. La longitud de onda se encuentra en el eje horizontal (en nm=10^-13), y para cada valor de ella existe un valor dado de intensidad para la radiación resultante, o equivalentemente, una dada cantidad de fotones. Se puede realizar un gráfico equivalente pero con la frecuencia o energía en el eje horizontal, gracias a las relaciones que existen entre ellas y hemos expuesto anteriormente.
    Crédito: http://www.jpereira.net/gestion-de-color/calibracion-del-monitor-tft-correccion-gamma-luminancia
     
    ¿Cómo se interpreta este gráfico? Supongamos que existe un sistema con una temperatura dada, fija. Si conocemos esa temperatura obtenemos la curva correspondiente. Luego, uno puede preguntarse cuál es la cantidad de fotones de una dada energía (o frecuencia, o longitud de onda). Pues bien, se busca esa frecuencia en el eje horizontal y se halla el valor buscado en el eje vertical. Este valor se puede estimar graficamente o, si se busca mayor precisión, puede calcularse analíticamente.
    ¿Cómo se trabaja en la práctica? Se observa una fuente de radiación en una o varias frecuencias y se mide la cantidad de fotones en cada una de esas frecuencias. De esta manera se obtienen puntos en un gráfico como el que mostramos anteriormente. Luego, se estudia cuál es la mejor "planckeana" que aproxima esos puntos (se halla la temperatura correspondiente). En la Figura 10 podemos ver el caso del Sol. La línea irregular negra representa los datos medidos, y la línea verde es la curva de cuerpo negro que mejor se le aproxima, es la que tiene una temperatura de alrededor de 5777 grados Kelvin.
     
    Figura 10: La emisión real del Sol se halla graficado en línea negra, y el espectro de un cuerpo negro a aproximadamente 5800 grados Kelvin se halla representado en color verde.
    Crédito: http://homepages.wmich.edu/~korista/sun-images/solar_specbb.jpg
     
    Este tipo de radiación no es la única que existe, pero era la que mayormente se observaba durante la exploración del rango visual del espectro electromagnético. La mayoría de las fuentes que se observaban eran estrellas, sus atmósferas, y conjuntos de estrellas. Quedaban ocultas muchísimas fuentes de radiación que en la actualidad se observan y estudian. Otro ingrediente que influía en la ocultación de muchos objetos es el material interestelar. Este material no forma las estrellas sino que por el contrario está entre ellas, y en algunos casos, está concentrado en zonas más densas. Así es que una gran parte de la radiación se ocultaba detrás de este material e impedía revelar una gran cantidad de fuentes.
    A continuación veremos cómo la radioastronomía tuvo influencia en el descubrimiento de otro tipo de fuentes y radiación.
     
    Una reseña histórica de la radioastronomía
     
    Las ondas de radio, de menor energía que las visuales, fueron predichas por medio de estudios teóricos mucho tiempo antes de ser detectadas. A diferencia del rango visual, se utilizan antenas para detectar este tipo de ondas, y los datos se recolectan en forma digital desde un principio de la radioastronomía. La gran ventaja que presentan las ondas de radio es que permiten ver a través del medio interestelar, complementando así en gran parte a las fuentes visibles sólo en el rango óptico.
    Las ondas de radio son emitidas y recibidas en la mayoría de los dispositivos de telecomunicaciones que utilizamos diariamente. Ésto es así desde principios del siglo XX. En 1931, K. G. Jansky trabajaba en los laboratorios Bell de comunicaciones cuando se le encargó determinar los niveles de radiointerferencia en la longitud de onda de 14,6 metros. Jansky detectó por primera vez ondas de radio provenientes del espacio exterior y lo hizo en un contexto alejado de la astrofísica.
     
    Figura 11: Karl Guthe Jansky (1905 - 1950), físico e ingeniero estadounidense. Fue el primero en detectar ondas de radio provevientes del cielo, en el año 1931. Realizó las mediciones en el contexto de las telecomunicaciones, trabajando para los laboratorios Bell, totalmente alejado de la astronomía. En la foto de la derecha se muestra la antena con la que trabajaba.
    Crédito:http://www.nrao.edu/whatisra/hist_jansky-s.shtml
     
    En la misma década, unos años más tarde, G. Reber construyó una radioantena en su patio con la cual observó el cielo. Realizó mediciones a frecuencias más bajas (del orden de cm) que Jansky, las cuales finalizó en 1937. En 1940 sus resultados fueron publicados en la revista científica The Astrophysical Journal. Otro artículo de Reber donde se mostraban mapas de todo el cielo en radio fue publicado en 1944 por la misma revista.
    A pesar de las duras condiciones que atravesaban los científicos en ese momento debido a la Segunda Guerra Mundial, astrónomos alemanes como J. Oort y H. van de Hulst pudieron realizar más investigaciones en radio. Inspirados por los grandes descubrimientos de Jansky y Reber descubrieron líneas espectrales (un tipo especial de radiación) en la banda de radio. Pudieron vincular este descubrimiento al movimiento del material presente en la Galaxia. Paralelamente en la Unión Soviética (Shklovsky, 1949) también se estudiaban líneas espectrales. Se publicaron trabajos aún más innovadores que los realizados hasta el momento.
    Se realizaban además, en ese momento, observaciones del Sol en radio. Reber fue el primero en publicar datos del Sol en 1944, pero fue en 1942 en los laboratorios Bell que ... Southworth detectó radiación térmica proveniente del Sol, lo cual fue publicado luego de la guerra en 1945. Al mismo tiempo ... Hey en Inglaterra develaba que ciertas fuentes de radiación que se creía eran 'el enemigo', eran en verdad manchas solares. Al igual que el trabajo de Reber, esta investigación no fue publicada hasta 1945. Hey declaró que la emisión no parecía tener origen térmico.
    Luego de la Segunda Guerra Mundial la radioastronomía comenzó a desarrollarse abiertamente y en forma vigorosa en la comunidad científica.
     
    ¡Eureka! ¡¿Radiación no térmica?!
     
    Luego de estos trabajos, dos grupos comenzaron a estudiar de cerca al Sol, en Sydney y Cambridge. En esos tiempos se desarrolló lo que se conoce como radiointerferometría: se utilizaba más de una antena para poder ganar detalle en las observaciones. Se comenzaron a observar fuentes extragalácticas (fuera de la Vía Láctea, la galaxia que nos aloja), y cada vez más lejanas. Una vez más, parecían detectarse fuentes que no se podían explicar por medio de la radiación térmica o de cuerpo negro. Por ejemplo, entre las fuentes que se observaron, las más brillantes resultaron ser un remanente de supernova llamado Cassiopeia A, y una galaxia llamada Cygnus A. Un remanente de supernova es una estrella de mucha masa, muy evolucionada, que explota violentamente; y, una galaxia, es un conjunto de millones de estrellas.
    Todo ésto sembró dudas sobre la radiación que se conocía hasta el momento. Se había detectado un tipo de emisión que no era térmica pero no se comprendía del todo qué era.
     
    Figura 12: A la izquierda una foto de un radiotelescopio compuesto por una sola antena (MOPRA), que se suele llamar de 'disco simple'. A la derecha imagen de un radiointerferómetro (ATCA), compuesto por más de una antena. Ambos pertenecen al conjunto de observatorios australianos llamado ATNF (Australia Telescope National Facility).
    Crédito:http://www.mdahlem.net/astro/obs/radio/mopra.php y http://www.flickr.com/photos/angelrls/375809875/in/set-72157594510409158
     
    En líneas generales, aparecían dos tipos de fuentes: un grupo de fuentes donde la emisión (o radiación) de fotones crecía con la frecuencia y otro grupo donde decrecía. Las del primer tipo, es decir, las fuentes que incrementan su emisión con la frecuencia, podían ser identificadas con fuentes conocidas en el rango visual; por ejemplo, la Luna. A estas fuentes que ya habían sido estudiadas en el rango visual, se las podía ajustar en muy buena aproximación al modelo de cuerpo negro y por ende se las llamó 'térmicas'. Al resto de las fuentes se las llamó 'no térmicas'.
    Para poder comprender en mayor profundidad los procesos físicos que daban origen a los fotones en radioondas, se comenzaron a vincular diferentes teorías y modelos físicos ya desarrollados. Luego de algunos años de controversia y dudas, se llegó a la conclusión de que los procesos físicos que generan la mayoría de la emisión en radio están vinculados a electrones(1) libres interactuando con algún otro componente. Existen dos tipos de procesos que dominan la emisión que se observa en el rango de radio: Bremsstrahlung (o emisión libre-libre) y sincrotrón (al principio conocida como Bremsstrahlung magnético).
    Al estudiar un electrón acelerado (y luego varios), en interacción con iones(2) se pudo comprender que el proceso conocido como Bremsstrahlung explica la radiación a bajas energías en el rango de radio. Ahora bien, no se podía entender del todo cuál era el origen de la radiación de más alta energía en radio, la no térmica. El proceso conocido como sincrotrón es el que explica este tipo de fotones de mayor energía. En este caso, los electrones poseen velocidades mucho mayores que en el caso anterior e interactúan con campos magnéticos pero no con iones. Las velocidades que los electrones podeen son cercanas a la velocidad de la luz. Es importante remarcar que ninguna partícula puede poseer una velocidad mayor a la de la luz, lo cual se desprende de la Teoría de la Relatividad desarrollada por Albert Einstein. Es así que si una partícula posee una velocidad cercana a la de la luz, podemos decir que ¡es muy veloz!
    En conclusión, se pudo asociar el proceso Bremsstrahlung a la emisión térmica, y el sincrotrón a la no térmica, en el rango de radioondas.
     
    Figura 13: Izquierda: esquema ilustrativo del proceso sincrotrón. La línea punteada representa el campo magnético y la hélice la trayectoria de los electrones. Las flechas externas indican que se han producido fotones, es decir, radiación. Derecha: esquema del procesos Bremsstrahlung. El núcleo pertenece a algún átomo de materia y el electrón libre pasa cerca del átomo con cierta velocidad y es así como se producen fotones.
     
    Hacia el año 1954, la radioastronomía constituía una nueva y consolidada rama de la astrofísica. Se planeaban grandes proyectos y ambiciosos instrumentos, se observaban gran cantidad de fuentes y así comenzaba la copiosa exploración de una porción del espectro electromagnético hasta ese momento apenas conocida.
     
    Flamantes descubrimientos que sembraron nuevos interrogantes
     
    Si bien la radiación sincrotrón permitió explicar la existencia de los fotones más energéticos en el rango de radio, existían fuentes que poseían energías aún más altas, superando las dadas en radio y óptico.
    La radiación térmica explica la generación de fotones en un sistema en equilibrio termodinámico que se puede caracterizar por una dada temperatura. Pero, ¿que valores de temperatura podemos encontrar en el Universo que conocemos?, y además, ¿cuál es el valor máximo que puede tener un fotón generado por un sistema de tipo cuerpo negro en el Universo?
    Tomemos un ejemplo concreto. Supongamos que observamos un fotón que posee una energía muy alta, con lo cual entra en el rango de altas energías, llamado también gamma. Si a este fotón lo interpretamos como de origen térmico, por medio de la ley de Planck llegamos a la conclusión de que debe provenir de un sistema cuya temperatura en equilibrio debe rondar los 10^13 grados Kelvin, o sea, 10.000.000.000.000 de grados. Este valor no es típico de objetos astrofísicos en equilibrio termodinámico y esa temperatura se daría solamente durante breves lapsos de tiempo, por ejemplo durante el Big Bang.
    ¿Cómo se explicaban entonces estos fotones de altas energías? No podían ser explicados por la radiación térmica, ni por la no térmica, a pesar de ser la respuesta a otros problemas.
    Otra pregunta que había surgido era cómo se aceleraban partículas hasta velocidades relativistas, dado que son las velocidades más grandes que las partículas que componen la materia pueden tener. Por ejemplo, la radiación generada en el proceso sincrotrón se produce en la interacción de electrones relativistas con campos amgnéticos. Pero, ¿cómo llegan los electrones a tener esas velocidades?, ¿qué los acelera?
     
    Estos interrogantes hicieron que la astrofísica de altas energías pudiese comenzar a ser explorada mediante el estudio de objetos que emiten radioondas. Ésto generó un avance considerable en relación a fuentes observables que podían ser origen de muchos fotones de altas energías.
     
    Astronomía de altas energías, una historia en paralelo
     
    Aunque la radioastronomía tuvo gran influencia en el avance de la astrofísica relativista (o de altas energías), ésta tuvo en sus principios un desarrollo independiente. La astronomía de altas energías es la que estudia los fotones más energéticos del espectro electromagnético (gamma) y los procesos físicos y objetos que los generan.
    En el año 1900, Villard asoció los rayos gamma con un tipo de radiación que no se veía afectada por campos magnéticos. Luego de 14 años se pudo dilucidar cuál era la longitud de onda de esa radiación: Rutherford y Andrade pudieron medir su valor por medio de experimentos en el laboratorio. Millikan fue el que sugirió por primera vez que los rayos gamma se podían identificar con los rayos cósmicos, que es otro tipo de radiación que en ese momento no se comprendía del todo. Esta idea fue luego descartada.
    En el año 1949 se descubrió una partícula llamada pión neutro, y en el año 1952 Hayakawa predijo que la interacción de rayos cósmicos con el medio interestelar debería producir piones neutros y luego éstos generar rayos gamma. En el mismo año, Hutchinson estimó la emisión de fotones gamma esperada que produciría el material de la galaxia por medio del proceso Bremsstrahlung. Fue entonces que resurgió el interés por la posible existencia de fuentes de fotones gamma galácticas. El trabajo definitivo en este sentido fue el realizado por Morrison en 1958, donde calculaba la emisión gamma esperada de una cierta cantidad de sistemas astrofísicos. A pesar de que existían esperanzas, la tecnología desarrollada no era suficiente. A diferencia de la astronomía gamma, la astronomía de rayos X (fotones menos energéticos que los gamma) pudo comenzar su desarrollo en los '60.
    ¿Cuáles eran los problemas para detectar fotones gamma? Recordemos de la Figura 5 donde se expone el espectro electromagnético, que los fotones gamma son generados a nivel atómico, es decir, los procesos físicos que los producen están relacionados a interacciones entre partículas (elementales o compuestas, pero de cualquier manera, en dimensiones muy pequeñas). Así es que las longitudes de onda de estos fotones son del orden de los átomos o aún menores. Pero, ¿estos fotones atraviesan la atmósfera? No. Peor aún, ¡pueden interactuar con ella!
    Los fotones gamma no sólo pueden interactuar con las partículas de la atmósfera, sino que también pueden hacerlo con el material de los detectores desarrollados con el fin de registrarlos. De esta manera, los fotones gamma que provienen de fuentes en el cielo pueden producir fotones gamma nuevos, entonces... ¿cómo se hace para detectarlos?
    Pero hay más problemas aún. La existencia de los rayos cósmicos (partículas que provienen del cielo, aún hoy día muy estudiadas) provoca algo similar a lo que producen los rayos gamma: interacciones con el material de la atmósfera o de los detectores. Pero, ¿otra vez lo mismo? ¿más fotones gamma nuevos? Así es.
    La separación de estas contribuciones secundarias respecto de las objetos celestes que producen rayos gamma fue y es uno de los grandes desafíos de la astrofísica de altas energías.
    Remontémonos a los '50 o '60, ¿cómo se hizo? La detección de estos escapadizos fotones hizo necesaria la utlización de satélites que superaran la altura de la atmósfera o alguna otra manera de detectarlos. Mientras se avanzaba en este sentido y la tecnología continuaba su desarrollo, se seguían desarrollando modelos y trabajos sobre la astronomía gamma.
    En los '50 se realizaban detecciones desde globos, pero las contribuciones atmosféricas predominaban en las observaciones y ocultaban las fuentes cósmicas de rayos gamma. En 1965 un detector a bordo del satélite Explorer 11 detectó fotones gamma del cielo por primera vez comprobando que los de la atmósfera los superaban en un factor 10. La segunda gran detección se realizó en 1967 y la mayor parte de la emisión provenía del centro de la Vía Láctea.
     
    Figura 14: Victor Hess (1883-1964), a bordo de unos de los globos desde los cuales realizaba mediciones. Ganó el premio Nobel en 1936 por las contribuciones realizadas en el área de radiación cósmica. Investigó una gran variedad de temas, pero siempre orientado a la astrofísica de altas energías.
     
    En los '70 un conjunto de satélites militares llamados Vela monitoreaban 'explosiones' de rayos gamma y fue así como de forma casual se descubrió un tipo de fuente astrofísica eruptiva de rayos gamma. Actualmente se conocen estas fuentes como gamma-ray burst (GRB), y son ampliamente estudiadas.
    Al mismo tiempo se crearon las 'cámaras de chispas', detectores que se utilizaban a bordo de satélites también. Este tipo de detectores significaron un paso hacia adelante en la astronomía de rayos gamma. No entraremos en detalle sobre el diseño y funcionamiento, sólo diremos que poseen gases como argón o neón los cuales al recibir un fotón gamma producen nuevas partículas. Luego, esas partículas son estudiadas y así de manera indirecta se analizan los fotones que arribaron inicialmente.
    Los instrumentos más importantes que utilizaron este tipo de tecnología fueron:
    • "SAS-II funcionó en los '70 y detectó alrededor de 8.000 fotones gamma, una gran cantidad para el momento. No sólo halló emisión hacia la Vía Láctea, sino que observó dos pulsars (nota al pie) que tienen su contraparte en radio, es decir, emiten fotones en radio.
    • "COS-B funcionó en los '70 y '80 y detectó alrededor de 200.000 fotones gamma. Se publicaron mapas de todo el cielo, y unas 25 fuentes gamma fueron observadas. De estas 25, unas 20 no podían ser identificadas con otras fuentes conocidas en ese momento.
    • "EGRET se encontraba a bordo del Observatorio de rayos gamma Compton, el cual acarreaba más instrumentos. Compton fue el instrumento más pesado jamás lanzado al espacio. Funcionó en los '90 y fue el primero en realizar un relevamiento en gamma completo de todo el cielo. Detectó, oficialmente publicadas, unas 271 fuentes de rayos gamma.
     
    Figura 15: Imagen real del Observatorio Compton, lanzado por NASA. Contenía varios detectores de altas energías que estudiaban diferentes tipos de fotones.
     
    El conjunto de instrumento que viajaban en el observatorio Compton, incluído EGRET, develó una gran variedad de fuentes gamma. Este observatorio significó un espectacular avance en la astronomía gamma a la vez que sembró nuevos interrogantes. Por ejemplo, más de la mitad de las 271 fuentes EGRET publicadas oficialmente en su tercer catálogo de 1999 no han sido identificadas, es decir, no se las ha podido relacionar a sistemas astrofísicos conocidos y detectados por otros instrumentos en otras longitudes de onda.
    Actualmente uno de los instrumentos más importantes en funcionamiento es el 'Large Area Telescope' (LAT) que se encuentra a bordo de un satélite de rayos gamma llamado Fermi en honor al físico ganador del premio Nobel que llevaba ese apellido, Enrico Fermi (1901-1954). Originalmente el nombre del telescopio espacial era GLAST (Gamma-Ray Large Area Space Telescope) pero luego fue cambiado. Fue lanzado por la NASA al espacio en el 2008, y pertenece a una colaboración internacional de varios países. El catálogo más actual publicado por la colaboración cuenta con el asombroso número de más de 1800 fuentes de rayos gamma detectadas.
    Además de la observación desde satélites se desarrollaron técnicas para poder observar fotones gamma desde la Tierra, lo cual es posible solamente para los fotones más energéticos. Esta subárea de la astronomía de altas energías se conoce como 'VHE astronomy' (very high energy: de muy alta energía). Cuando uno de estos fotones llega a la atmósfera e interactúa con ella, produce nuevas partículas y éstas a su vez generan lo que se conoce como radiación Cherenkov, la cual puede llegar hasta el suelo. Observando esta radiación se puede entonces inferir que un fotón gamma muy energético ha llegado a nosotros desde alguna fuente celeste. Los telescopios Cherenkov cuentan con dispositivos que multiplican la intensidad de la radiación incidente ya que ésta puede ser muy débil.
     
    Figura 16: Un esquema de la radiación Cherenkov producida por un rayo gamma que arriba a la Tierra. Se pueden ver las escalas de distancias en las que se producen los procesos físicos involucrados.
     
    El primer descubrimiento relevante realizado con un instrumento de este tipo se llevó a cabo en 1989 con el telescopio Whipple, actualmente reemplazado por VERITAS. Además existen HESS, CANGAROO II y MAGIC. Actualmente se encuentran en desarrollo telescopios de tipo Cherenkov aún más sofisticados y que permitirán mejorar las condiciones de observación. Uno de ellos es el CTA (Cherenkov Telescope Array), un arreglo de 100 telescopios, sin precedentes hasta el momento.
     
    La astronomía de rayos gamma, desde los '50 en adelante, no sólo ha superado los problemas técnicos que la frenaban, sino que ha avanzado un gran trecho en lo que concierne al desarrollo de modelos teóricos y descubrimiento de gran cantidad de fuentes de fotones de altas energías. Existen actualmente extensos catálogos de fuentes gamma, entre las cuales se hallan galaxias de varios tipos, estrellas evolucionadas conocidas como pulsars, candidatos a agujeros negros galácticos, candidatos a agujeros negros supermasivos extragalácticos, remanentes de supernova y estrellas con choque de vientos, entre otros. Se han desarrollado ampliamente muchos temas, pero lo que respecta a procesos que generan radiación (conocidos como radiativos) es lo que nos interesa abordar.
    Recordemos que para el caso de obejtos que emiten radioondas hemos mencionado Bremstrahlung y sincrotrón como los principales procesos físicos que generan fotones en esas longitudes de onda. En el caso de la astronomía de altas energías hemos visto que los fotones son no térmicos, pero, ¿qué procesos los generan? Se los suele conocer como 'procesos radiativos no térmicos' y lejos de ser solamente dos, como los más importantes en el rango de radio, son muchos más.
    Todos estos procesos tienen algo en común: partículas relativistas en interacción con alguna componente extra. Esta segunda componente puede ser: campos magnéticos, materia o un campo de fotones. Los diferentes procesos radiativos dependen de distintos parámetros. Por ejemplo, para el proceso sincrotrón, la cantidad de fotones que se genere a diferentes valores de energía depende principalmente del campo magnético. En el caso de algún proceso donde esté involucrado el material interestelar, los fotones resultantes dependerán de la densidad de la materia; así, en cada proceso, tendremos un parámatro determinante (o más de uno) que afectará directamente en la emisión esperada.
    Este tipo de estudio es muy común actualmente en la astronomía gamma, y una de las aristas más interesantes de las fuentes de altas energías es la presencia de partículas relativistas, que poseen velocidades cercanas a la de la luz. Estas partículas no sólamente generan fotones de los más energéticos que existen en el Universo sino que están ligadas a algo más: algo que las aceleró. Estos 'motores' de aceleración son una de las componentes más llamativas que posee esta rama de la astronomía. ¿Qué es lo que acelera estas partículas? Se han desarrollado modelos para poder explicar el origen de las altas velocidades, y en muchos casos las observaciones están casi en completa concordancia con los modelos, pero en muchos otros no está tan claro. Aún queda un gran camino por recorrer.
     
    Bajas y altas energías: lejos pero cerca
     
    La radioastronomía estudia la porción menos energética del espectro electromagnético, y, por otro lado, la astronomía gamma tiene bien merecido su nombre de astronomía de altas energías ya que se ocupa de los fotones de mayor energía del espectro. Pero, concretamente, ¿cómo se relacionan los fotones de bajas y altas energías?
    Se utiliza un argumento muy sencillo para vincularlas. Tendremos en cuenta las ideas más básicas dejando de lado algunos detalles para evitar complejidad en el texto. Supongamos que se observa una fuente de emisión en radio y se llega a la conclusión de que su radiación es no térmica. Como hemos visto, el proceso sincrotrón es el que explica este tipo de emisión en radio. Los fotones no térmicos generados se producen en la interacción entre electrones relativistas y un campo magnético. Por lo tanto, podemos decir que si observamos emisión sincrotrón en radio, encontramos una evidencia de la presencia de partículas relativistas, es este caso electrones. Con esta hipótesis, más el conocimiento de los parámetros que necesitamos, y que obtenemos por medio de las observaciones, podemos estimar la emisión esperada que producen los diferentes procesos radiativos no térmicos que producen fotones de altas energías (y en el caso de sincrotrón también de bajas energías).
    El Grupo de Astrofísica Relativista y Radioastronomía (GARRA), del cual formo parte, se encarga de estudiar este aspecto de muchas fuentes astrofísicas, entre muchos otros temas (http://www.iar.unlp.edu.ar/garra/).
     
    ¿Conclusiones?
     
    La radiación térmica es la que se conoce como radiación de cuerpo negro (Planck). Es generada por un sistema en equilibrio termodinámico caracterizado por una temperatura dada, y puede generar fotones con energías que llegan sólo hasta el rango de los rayos X.
    La radiación no térmica es generada por sistemas fuera del equilibrio termodinámico, y que tienen por lo menos dos componentes: partículas relativistas más algún campo; magnético, de fotones, o materia. Los fotones no térmicos, generados por una gran variedad de procesos, abarcan todo el espectro electromagnético, desde radio hasta gamma.
    Las fuentes que emiten fotones de altas energías no sólo pueden explicar los procesos no térmicos y los fotones de mayor energía, sino que también sirven para testear teorías físicas que en otro tipo de fuentes no se podrían testear, así como tampoco en laboratorios terrestres. Estos sistemas poseen condiciones extremas que crean el ambiente necesario para que todo los estudios sean llevados a cabo con éxito.
    Las fuentes de rayos gamma, además, poseen aceleradores de partículas de los más eficientes que existen en el Universo, impulsando partículas que alcanzan velocidades cercanas a la de la luz y luego generan fotones de los más energéticos que se hayan observado.
    En este texto hemos realizado un mentiroso 'breve' repaso por los inicios de la historia de la astronomía de bajas y altas energías, radio y gamma respectivamente. Además, hemos visto cómo se relacionan estas dos ramas, extremas en lo que respecta a las energías del espectro electromagnético.
    Más allá de los conceptos físicos, nuevos para algunos y conocidos para otros, quisiera remarcar el hecho de que la historia de la Astronomía se está desarrollando en este momento, día a día. No nos es necesario viajar en el tiempo 5000 años hacia atrás (si es posible o no, consultarlo con los expertos, por ejemplo, el Dr. G. E. Romero) para poder apreciar grandes avances en la ciencia: se están dando ahora.
    En general tendemos al pensamiento de que está todo hecho, de que todo ha sido descubierto, pero la realidad es que estamos lejos de ello. Se puede llegar a esta idea con abordar apenas una pequeña parte de la inmensidad de áreas que abarca la Astronomía. Sin ir más lejos, lo hemos hecho en este artículo. Imaginemos qué pasaría si exploramos otras áreas: los interrogantes se seguirían acumulando en un sin fin de preguntas sin respuestas. Y más aún si nos aventuramos a otras áreas de la ciencia.
    El método científico es la respuesta a muchos cuestionamientos, pero a la vez que sacia nuestras dudas nos permite seguir alimentando nuestra curiosidad y búsqueda de nuevas respuestas, que una vez más, generarán nuevos interrogantes. Es una 'historia sin fin'.
     
     
    Espero hayan disfrutado de la lectura, no haberlos aburrido, y que se haya comprendido el texto.
    Cintia S. Peri
     
    Bibliografía
     
    Tools of Radio Astronomy, Kristen Rohlfs, 1990. Astronomy and Astrophysics Library, Springer-Verlag.
    An Introduction to Radio Astronomy, B. F. Burke y F. Graham-Smith, 1997. Cambridge University Press.
    The origin of cosmic rays, V. L. Ginzburg y S. I. Syrovatskii, 1964. The Macmillan Company (New York, USA) y Pergamon Press Limited (Oxford, England).
    Introducción a la Astrofísica Relativista, G. E. Romero y J. M. Paredes, 2011. Textos docentes, Universidad de Barcelona.
    Cosmic gamma-ray sources, K. S. Cheng y G. E. Romero (editores), 2004. Astrophysics and Space Science Library. Kluwer Academic Publishers.
    High Energy Astrophysics, M. S. Longair, 2011. Cambridge University Press.
    Teraelectronvolt Astronomy, J. A. Hinton y W. Hoffmann, 2009. Annual Review of Astronomy and Astrophysics.
     
    Páginas de Internet oficiales
     
    Laboratorios Bell: www.bell-labs.com
    The Energetic Gamma Ray Experiment Telescope(EGRET): http://heasarc.gsfc.nasa.gov/docs/cgro/cossc/egret
    The Fermi Large Area Telescope: http://www-glast.stanford.edu/
    The Cherenkov Telescope array: http://www.cta-observatory.org/

    (1) es una de las partículas elementales que forma parte de los átomos. Se carateriza por tener carga negativa.
    (2) es una partícula que posee carga positiva.
    Por Blumina Romero (*)
    Me desperté agitado. Había soñado otra vez con él. Recuerdos de mi padre giraban en mi cabeza. No me dejaban dormir. Lo imaginaba muriendo una y otra vez. Pero sabía que sólo era una fantasía, ya que mi buena madre, quien nunca me mentiría, me había dicho que él estaba de viaje, en Afganistán, por un largo, largo tiempo.
     
    Lo único que sabía de él era que, antes de irse, creó una máquina del tiempo. Era un científico muy inteligente, respetuoso, y tenía una paciencia como ningún otro.
     
    Sin saber nada de mi padre, pasaron los años. Y la intriga me estaba matando. Quería saber de mi padre. Mi madre jamás hablaba de él. Un día sentí curiosidad por el aparato que había creado antes de marcharse. Lo miré por un largo rato. Y trate de encenderlo. ¡¡Lo había logrado!! Encendí la máquina del tiempo. Apenas lo hice, viaje hasta el día en que mi papá se marchó. Ahí estaba, acostado en la cama, y se lo veía muy triste, pálido, parecía enfermo. Me oculté, no quería ser visto, por mi familia del pasado. Vi entrar a una mujer con un bebe en brazos. Era mi madre. Me quede atónito. Ella le estaba llevando unos medicamentos a Alberto, mi padre. Parecía que se sentía muy mal. De repente veo a mi madre llamando apresuradamente a alguien. El bebe lloraba, yo lloraba. El enfermo le hablaba dulcemente a mi madre, como si no la fuera a ver nunca más. Me di cuenta de lo que estaba sucediendo, mi padre estaba muriendo. Salí corriendo de donde me ocultaba, llorando, tan apenado, triste y desconcertado. Mi padre jamás se marcho a Afganistán; el murió en mi propia casa, 16 años atrás.
     
    Regrese a la máquina, sentía una tristeza inmensa, desoladora. Volví al año 2053. Allí me quedé en mi casa sólo y triste, esperando a que mi madre llegue del trabajo.
     
    (*) Blumina Romero es estudiante en el Colegio Benito Lynch de La Plata. Tiene 13 años.
     Actividades de Divulgación científica en el IAR
    El Área de Divulgación del IAR continúa su labor llevando a cabo las tradicionales visitas guiadas por el Instituto. Estas visitas guiadas para establecimientos educacionales consisten en proyección de material audiovisual, charla explicativa y recorrida por sus instalaciones.
     
    Las tareas de extensión son realizadas por estudiantes avanzados de la carrera de Astronomía, y por docentes e investigadores de la Institución.
    Los días de atención son los viernes, en dos turnos:
    • mañana (9:00 hs)
    • tarde (13:00 hs)
    Los turnos se pueden solicitar por teléfono, fax o e-mail a:
    Tel/Fax: (0221) 425-4909 y (0221) 482-4903
     
    Por razones de organización, las visitas guiadas se restringen al periodo comprendido entre principios de abril y principios de diciembre de cada año.

    Para mayor información:

    Visite nuestra página web:  http://www.iar.unlp.edu.ar/divulgacion.htm
      El IAR en los medios
    En esta sección encontrará artículos publicados en diversos medios acerca de las distintos actividades del IAR y su gente.
     
    - Concentran la producción científica de la UNLP - Diario Hoy (05-03-2012) Descargar Descargar
     
    - La UNLP, el Conicet y la CIC conformarán en 2015 un polo científico clave - Criterio Online (05-03-2012) Descargar Descargar
     
    - La UNLP, el CONICET y la CIC conformarán en La Plata un polo científico- tecnológico - El 9 de Julio (05-03-2012) Descargar Descargar
     
    - La UNLP, el Conicet y la CIC conformarán en 2015 un polo científico clave - Agencia de Noticias Institucionales (ANI) (05-03-2012) Descargar Descargar
     
    - Proyectan un polo de ciencia y tecnología en el Bosque - Diario El Día (05-03-2012)  Descargar Descargar
     
    - Presentada en la Universidad de Jaén la primera tesis doctoral sobre Astrofísica - Diario Digital UJAEN (22-02-2012) Descargar Descargar
     
    - Un estudiante argentino medio es mejor que uno de Europa - El Día (22-01-2012) Descargar Descargar
     
    - Un estudiante argentino medio es mejor que uno de Europa - Quilmes Presente (22-01-2012) Descargar Descargar
     
     Quienes somos:
    Selección de contenidos y diagramación:
    Lic. Claudia Boeris
    C.C. Nelva Perón

    Asesoramiento científico:
    Dr. E. Marcelo Arnal

    Dirección:

    Camino Gral. Belgrano Km 40 (Parque Pereyra Iraola)
    Berazategui - Prov. de Buenos Aires - ARGENTINA

    Dirección Postal:

    Casilla de Correo No. 5
    1894 -Villa Elisa
    Prov. de Buenos Aires - ARGENTINA

    Teléfonos y FAX:

    Tel: (0221) 482-4903
    Tel/Fax: (0221) 425-4909

    Correo electrónico
    difusion@iar.unlp.edu.ar

     Ediciones Anteriores
    Año 1 Nº    1  - Junio de 2003
    Año 1 Nº    2  - Septiembre de 2003
    Año 1 Nº    3  - Diciembre de 2003
    Año 2 Nº    4  - Marzo de 2004
    Año 2 Nº    5  - Junio de 2004
    Año 2 Nº    6  - Setiembre de 2004
    Año 2 Nº    7  - Diciembre de 2004
    Año 3 Nº    8  - Marzo de 2005
    Año 3 Nº    9  - Junio de 2005
    Año 3 Nº  10 - Setiembre de 2005
    Año 3 Nº  11 - Diciembre de 2005
    Año 4 Nº  12  - Marzo de 2006
    Año 4 Nº  13  - Junio de 2006
    Año 4 Nº  14 - Setiembre de 2006
    Año 4 Nº  15 - Diciembre de 2006
    Año 5 Nº  16  - Marzo de 2007
    Año 5 Nº  17  - Junio de 2007
    Año 5 Nº  18 - Setiembre de 2007
    Año 5 Nº  19 - Diciembre de 2007
    Año 6 Nº  20  - Marzo de 2008
    Año 6 Nº  21  - Junio de 2008
    Año 6 Nº  22 - Setiembre de 2008
    Año 6 Nº  23 - Diciembre de 2008
    Año 7 Nº  24  - Marzo de 2009
    Año 7 Nº  25  - Junio de 2009
    Año 7 Nº  26 - Setiembre de 2009
    Año 7 Nº  27 - Diciembre de 2009
    Año 8 Nº  28 - Marzo de 2010
    Año 8 Nº  29 - Junio de 2010
    Año 8 Nº  30 - Setiembre de 2010
    Año 8 Nº  31 - Diciembre de 2010
    Año 9 Nº  32 - Marzo de 2011
    Año 9 Nº  33 - Junio de 2011
    Año 9 Nº  34 - Setiembre de 2011
    Año 9 Nº  35 - Diciembre de 2011
    ©Instituto Argentino de Radioastronomía - (2012)